Difference between revisions of "2005 AMC 10B Problems/Problem 24"

(Solution 3)
(Solution 3)
Line 15: Line 15:
  
 
== Solution 3 ==
 
== Solution 3 ==
Once again, the solution is quite similar as the above solutions. Since <math>x</math> and <math>y</math> are two digit integers, we can write <math>x = 10a+b, y = 10b+a</math>. Since  <math>x^2 - y^2 = (x-y)(x+y)</math>, substituting and factoring, we get <math>99(a+b)(a-b) = m^2</math>. Therefore, <math>(a+b)(a-b) = \frac{m^2}{99}</math> and \frac{m^2}{99} must be an integer. Therefore a quick strategy is to find the smallest such integer <math>m</math> such that \frac{m^2}{99} is an integer. We notice that 99 has a prime factorization like <math>3^2 \cdot 11</math>
+
Once again, the solution is quite similar as the above solutions. Since <math>x</math> and <math>y</math> are two digit integers, we can write <math>x = 10a+b, y = 10b+a</math>. Since  <math>x^2 - y^2 = (x-y)(x+y)</math>, substituting and factoring, we get <math>99(a+b)(a-b) = m^2</math>. Therefore, <math>(a+b)(a-b) = \frac{m^2}{99}</math> and <math>\frac{m^2}{99}</math> must be an integer. Therefore a quick strategy is to find the smallest such integer <math>m</math> such that <math>\frac{m^2}{99}</math> is an integer. We notice that 99 has a prime factorization of <math>3^2 \cdot 11.</math>
  
 
== See Also ==
 
== See Also ==

Revision as of 17:10, 9 June 2016

Problem

Let $x$ and $y$ be two-digit integers such that $y$ is obtained by reversing the digits of $x$. The integers $x$ and $y$ satisfy $x^2 - y^2 = m^2$ for some positive integer $m$. What is $x + y + m$?

$\mathrm{(A)} 88 \qquad \mathrm{(B)} 112 \qquad \mathrm{(C)} 116 \qquad \mathrm{(D)} 144 \qquad \mathrm{(E)} 154$

Solution

Let $x = 10a+b, y = 10b+a$, without loss of generality with $a>b$. Then $x^2 - y^2 = (x-y)(x+y) = (9a - 9b)(11a + 11b) = 99(a-b)(a+b) = m^2$. It follows that $11|(a-b)(a+b)$, but $a-b < 10$ so $11|a+b \Longrightarrow a+b=11$. Then we have $33^2(a-b) = m^2$. Thus $a-b$ is a perfect square. Also, because $a-b$ and $a+b$ have the same parity, $a-b$ is a one-digit odd perfect square, namely $1$ or $9$. The latter case gives $(a,b) = (10,1)$, which does not work. The former case gives $(a,b) = (6,5)$, which works, and we have $x+y+m = 65 + 56 + 33 = 154\ \mathbf{(E)}$.

Solution 2

The first steps are the same as above. Let $x = 10a+b, y = 10b+a$, where we know that a and b are digits (whole numbers less than 10). Like above, we end up getting $(9a - 9b)(11a + 11b) = 99(a-b)(a+b) = m^2$. This is where the solution diverges.

We know that the left side of the equation is a perfect square because m is an integer. If we factor 99 into its prime factors, we get $3^2\cdot 11$. In order to get a perfect square on the left side, $(a-b)(a+b)$ must make both prime exponents even. Because the a and b are digits, a simple guess would be that $(a+b)$ (the bigger number) equals 11 while $(a-b)$ is a factor of nine (1 or 9). The correct guesses are $a = 6, b = 5$ causing $x = 65, y = 56,$ and $m = 33$. The sum of the numbers is $\boxed{\textbf{(E) }154}$

Solution 3

Once again, the solution is quite similar as the above solutions. Since $x$ and $y$ are two digit integers, we can write $x = 10a+b, y = 10b+a$. Since $x^2 - y^2 = (x-y)(x+y)$, substituting and factoring, we get $99(a+b)(a-b) = m^2$. Therefore, $(a+b)(a-b) = \frac{m^2}{99}$ and $\frac{m^2}{99}$ must be an integer. Therefore a quick strategy is to find the smallest such integer $m$ such that $\frac{m^2}{99}$ is an integer. We notice that 99 has a prime factorization of $3^2 \cdot 11.$

See Also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png