2005 AMC 10B Problems/Problem 17
Contents
Problem
Suppose that , , , and . What is ?
Solution
Solution 2 (logarithms)
We can write as , as , as , and as .
We know that can be rewritten as , so we have:
Solution 3 (logarithm chain rule)
As in Solution 2, we can write as , as , as , and as . is equivalent to . By the logarithm chain rule, this is equivalent to , which evaluates to .
~solver1104
See Also
2005 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.