Difference between revisions of "2016 AIME I Problems/Problem 15"

m (Solution)
Line 9: Line 9:
 
<cmath>\angle AEX = \angle ABX = \angle XCB = \angle XYB</cmath>and
 
<cmath>\angle AEX = \angle ABX = \angle XCB = \angle XYB</cmath>and
 
<cmath>\angle XEB = \angle XAB = \angle XDA = \angle XYA.</cmath>Thus <math>AY // EB</math> and <math>YB // EA</math> so <math>AEBY</math> is a parallelogram. Hence <math>AS = SB</math> and <math>SE = SY</math>. But notice that <math>DXE</math> and <math>EXC</math> are similar by <math>AA</math> Similarity, so <math>XE^2 = XD \cdot XC = 37 \cdot 67</math>. But
 
<cmath>\angle XEB = \angle XAB = \angle XDA = \angle XYA.</cmath>Thus <math>AY // EB</math> and <math>YB // EA</math> so <math>AEBY</math> is a parallelogram. Hence <math>AS = SB</math> and <math>SE = SY</math>. But notice that <math>DXE</math> and <math>EXC</math> are similar by <math>AA</math> Similarity, so <math>XE^2 = XD \cdot XC = 37 \cdot 67</math>. But
<cmath>XE^2 - XY^2 = (XE + XY)(XE - XY) = EY \cdot 2XS = 2SY \cdot 2SX = 4SA^2 = AB^2.</cmath>Hence <math>AB^2 = 47^2 - 37 \cdot 67 = 270.</math>
+
<cmath>XE^2 - XY^2 = (XE + XY)(XE - XY) = EY \cdot 2XS = 2SY \cdot 2SX = 4SA^2 = AB^2.</cmath>Hence <math>AB^2 = 37 \cdot 67 - 47^2 = 270.</math>
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2016|n=I|num-b=14|after=Last Question}}
 
{{AIME box|year=2016|n=I|num-b=14|after=Last Question}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:46, 4 March 2016

Problem

Circles $\omega_1$ and $\omega_2$ intersect at points $X$ and $Y$. Line $\ell$ is tangent to $\omega_1$ and $\omega_2$ at $A$ and $B$, respectively, with line $AB$ closer to point $X$ than to $Y$. Circle $\omega$ passes through $A$ and $B$ intersecting $\omega_1$ again at $D \neq A$ and intersecting $\omega_2$ again at $C \neq B$. The three points $C$, $Y$, $D$ are collinear, $XC = 67$, $XY = 47$, and $XD = 37$. Find $AB^2$.

Solution

By radical axis theorem $AD, XY, BC$ concur at point $E$.

Let $AB$ and $EY$ intersect at $S$. Note that because $AXDY$ and $CYXB$ are cyclic, by Miquel theorem $AXBE$ are cyclic as well. Thus \[\angle AEX = \angle ABX = \angle XCB = \angle XYB\]and \[\angle XEB = \angle XAB = \angle XDA = \angle XYA.\]Thus $AY // EB$ and $YB // EA$ so $AEBY$ is a parallelogram. Hence $AS = SB$ and $SE = SY$. But notice that $DXE$ and $EXC$ are similar by $AA$ Similarity, so $XE^2 = XD \cdot XC = 37 \cdot 67$. But \[XE^2 - XY^2 = (XE + XY)(XE - XY) = EY \cdot 2XS = 2SY \cdot 2SX = 4SA^2 = AB^2.\]Hence $AB^2 = 37 \cdot 67 - 47^2 = 270.$

See Also

2016 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png