Difference between revisions of "2016 AIME I Problems/Problem 6"
V-for-vieta (talk | contribs) (→Solution) |
V-for-vieta (talk | contribs) (→Solution 3) |
||
Line 15: | Line 15: | ||
==Solution 3== | ==Solution 3== | ||
− | WLOG assume <math>\triangle ABC</math> is isosceles (with vertex <math>C</math>). Let <math>O</math> be the center of the circumcircle, <math>r</math> the inradius, and <math>R</math> the circumradius. A simple sketch will reveal that <math>\triangle ABC</math> must also be obtuse (as an acute triangle will result in <math>LI</math> being greater than <math>DL</math>) and that <math>O</math> and <math>I</math> are collinear. Next, if <math>OI=d</math>, <math>DO+OI=R+d</math> and <math>R+d=DL+DI=5</math>. Euler gives us that <math>d^{2}=R(R-2r)</math>, and in this case, <math>r=LI=2</math>. Thus, <math>d=\sqrt{R^{2}-4R}</math>. Solving for <math>d</math>, we have <math>R+\sqrt{R^{2}-4R}=5</math>, then <math>R^{2}-4R=25-10R+R^{2}</math>, yielding <math>R=\frac{25}{6}</math>. Next, <math>R+d=5</math> so <math>d=\frac{5}{6}</math>. Finally, <math>OC=OI+ | + | WLOG assume <math>\triangle ABC</math> is isosceles (with vertex <math>C</math>). Let <math>O</math> be the center of the circumcircle, <math>r</math> the inradius, and <math>R</math> the circumradius. A simple sketch will reveal that <math>\triangle ABC</math> must also be obtuse (as an acute triangle will result in <math>LI</math> being greater than <math>DL</math>) and that <math>O</math> and <math>I</math> are collinear. Next, if <math>OI=d</math>, <math>DO+OI=R+d</math> and <math>R+d=DL+DI=5</math>. Euler gives us that <math>d^{2}=R(R-2r)</math>, and in this case, <math>r=LI=2</math>. Thus, <math>d=\sqrt{R^{2}-4R}</math>. Solving for <math>d</math>, we have <math>R+\sqrt{R^{2}-4R}=5</math>, then <math>R^{2}-4R=25-10R+R^{2}</math>, yielding <math>R=\frac{25}{6}</math>. Next, <math>R+d=5</math> so <math>d=\frac{5}{6}</math>. Finally, <math>OC=OI+CI</math> gives us <math>R=d+CI</math>, and <math>CI=\frac{25}{6}-\frac{5}{6}=\frac{10}{3}</math>. Our answer is then <math>\boxed{013}</math>. |
== See also == | == See also == | ||
{{AIME box|year=2016|n=I|num-b=5|num-a=7}} | {{AIME box|year=2016|n=I|num-b=5|num-a=7}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:40, 4 March 2016
Problem
In let be the center of the inscribed circle, and let the bisector of intersect at . The line through and intersects the circumscribed circle of at the two points and . If and , then , where and are relatively prime positive integers. Find .
Solution
Solution 1
It is well known that and so we have . Then and so and from the angle bisector theorem so and our answer is
Solution 2
This is a cheap solution.
WLOG assume is isosceles. Then, is the midpoint of , and . Draw the perpendicular from to , and let it meet at . Since , is also (they are both inradii). Set as . Then, triangles and are similar, and . Thus, . , so . Thus . Solving for , we have: , or . is positive, so . As a result, and the answer is
Solution 3
WLOG assume is isosceles (with vertex ). Let be the center of the circumcircle, the inradius, and the circumradius. A simple sketch will reveal that must also be obtuse (as an acute triangle will result in being greater than ) and that and are collinear. Next, if , and . Euler gives us that , and in this case, . Thus, . Solving for , we have , then , yielding . Next, so . Finally, gives us , and . Our answer is then .
See also
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.