Difference between revisions of "2016 AIME I Problems/Problem 11"
Fclvbfm934 (talk | contribs) |
Fclvbfm934 (talk | contribs) (→Solution 2) |
||
Line 17: | Line 17: | ||
Suppose we had another root that is not those <math>3</math>. Notice that the equation above indicates that if <math>r</math> is a root then <math>r+1</math> and <math>r-1</math> is also a root. Then we'd get an infinite amount of roots! So that is bad. So we cannot have any other roots besides those three. | Suppose we had another root that is not those <math>3</math>. Notice that the equation above indicates that if <math>r</math> is a root then <math>r+1</math> and <math>r-1</math> is also a root. Then we'd get an infinite amount of roots! So that is bad. So we cannot have any other roots besides those three. | ||
− | That means <math>P(x) = cx(x-1)(x+1)</math>. We can use <math>P(2)^2 = P(3)</math> to get <math>c = \frac{ | + | That means <math>P(x) = cx(x-1)(x+1)</math>. We can use <math>P(2)^2 = P(3)</math> to get <math>c = \frac{3}{2}</math>. Plugging in <math>\frac{7}{2}</math> is now trivial and we see that it is <math>\frac{105}{4}</math> so our answer is <math>\boxed{109}</math> |
+ | |||
== See also == | == See also == | ||
{{AIME box|year=2016|n=I|num-b=10|num-a=12}} | {{AIME box|year=2016|n=I|num-b=10|num-a=12}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 16:20, 4 March 2016
Contents
Problem
Let be a nonzero polynomial such that for every real , and . Then , where and are relatively prime positive integers. Find .
Solution 1
We substitute into to get . Since we also have that , we have that and . We can also substitute , , and into to get that , , and . This leads us to the conclusion that and .
We next use finite differences to find that is a cubic polynomial. Thus, must be of the form of . It follows that ; we now have a system of equations to solve. We plug in , , and to get
We solve this system to get that , , and . Thus, . Plugging in , we see that . Thus, , , and our answer is .
Solution 2
So from the equation we see that divides and divides so we can conclude that and divide . This means that and are roots of . Plug in and we see that so is also a root.
Suppose we had another root that is not those . Notice that the equation above indicates that if is a root then and is also a root. Then we'd get an infinite amount of roots! So that is bad. So we cannot have any other roots besides those three.
That means . We can use to get . Plugging in is now trivial and we see that it is so our answer is
See also
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.