Difference between revisions of "2016 AMC 12A Problems/Problem 24"

(Solution)
(Solution)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
 +
 +
===Solution 1===
 
The acceleration must be zero at the <math>x</math>-intercept; this intercept must be an inflection point for the minimum <math>a</math> value.
 
The acceleration must be zero at the <math>x</math>-intercept; this intercept must be an inflection point for the minimum <math>a</math> value.
 
Derive <math>f(x)</math> so that the acceleration <math>f''(x)=0</math>:
 
Derive <math>f(x)</math> so that the acceleration <math>f''(x)=0</math>:
Line 23: Line 25:
  
 
<math>f(x)=0\rightarrow x=\sqrt{3}</math> triple root. "Complete the cube."
 
<math>f(x)=0\rightarrow x=\sqrt{3}</math> triple root. "Complete the cube."
 +
 +
 +
===Solution 2===
 +
 +
Note that since both <math>a</math> and <math>b</math> are positive, all 3 roots of the polynomial are positive as well.
 +
 +
 +
Let the roots of the polynomial be <math>r, s, t</math>. By Vieta's <math>a=r+s+t</math> and <math>a=rst</math>.
 +
 +
 +
Since <math>r, s, t</math> are positive we can apply AM-GM to get <math>\frac{r+s+t}{3} \ge \sqrt[3]{rst} \rightarrow \frac{a}{3} \ge \sqrt[3]{a}</math>. Cubing both sides and then dividing by <math>a</math> (since <math>a</math> is positive we can divide by <math>a</math> and not change the sign of the inequality) yields <math>\frac{a^2}{27} \ge 1 \rightarrow a \ge 3\sqrt{3}</math>.
 +
 +
 +
Thus, the smallest possible value of <math>a</math> is <math>3\sqrt{3}</math> which is achieved when all the roots are equal to <math>\sqrt{3}</math>. For this value of <math>a</math>, <math>b=\boxed{\textbf{(B) }9}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2016|ab=A|num-b=23|num-a=25}}
 
{{AMC12 box|year=2016|ab=A|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:24, 7 February 2016

Problem

There is a smallest positive real number $a$ such that there exists a positive real number $b$ such that all the roots of the polynomial $x^3-ax^2+bx-a$ are real. In fact, for this value of $a$ the value of $b$ is unique. What is this value of $b$?

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 12$

Solution

Solution 1

The acceleration must be zero at the $x$-intercept; this intercept must be an inflection point for the minimum $a$ value. Derive $f(x)$ so that the acceleration $f''(x)=0$: $x^3-ax^2+bx-a\rightarrow 3x^2-2ax+b\rightarrow 6x-2a\rightarrow x=\frac{a}{3}$ for the inflection point/root. Furthermore, the slope of the function must be zero - maximum - at the intercept, thus having a triple root at $x=a/3$ (if the slope is greater than zero, there will be two complex roots and we do not want that).

The function with the minimum $a$:

\[f(x)=\left(x-\frac{a}{3}\right)^3\] \[x^3-ax^2+\left(\frac{a^2}{3}\right)x-\frac{a^3}{27}\] Since this is equal to the original equation $x^3-ax^2+bx-a$,

\[\frac{a^3}{27}=a\rightarrow a^2=27\rightarrow a=3\sqrt{3}\] \[b=\frac{a^2}{3}=\frac{27}{3}=\boxed{\textbf{(B) }9}\]

The actual function: $f(x)=x^3-\left(3\sqrt{3}\right)x^2+9x-3\sqrt{3}$

$f(x)=0\rightarrow x=\sqrt{3}$ triple root. "Complete the cube."


Solution 2

Note that since both $a$ and $b$ are positive, all 3 roots of the polynomial are positive as well.


Let the roots of the polynomial be $r, s, t$. By Vieta's $a=r+s+t$ and $a=rst$.


Since $r, s, t$ are positive we can apply AM-GM to get $\frac{r+s+t}{3} \ge \sqrt[3]{rst} \rightarrow \frac{a}{3} \ge \sqrt[3]{a}$. Cubing both sides and then dividing by $a$ (since $a$ is positive we can divide by $a$ and not change the sign of the inequality) yields $\frac{a^2}{27} \ge 1 \rightarrow a \ge 3\sqrt{3}$.


Thus, the smallest possible value of $a$ is $3\sqrt{3}$ which is achieved when all the roots are equal to $\sqrt{3}$. For this value of $a$, $b=\boxed{\textbf{(B) }9}$.

See Also

2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png