Difference between revisions of "2016 AMC 12A Problems/Problem 9"

(Solution)
m (Added MAA box)
Line 22: Line 22:
  
 
Solving for <math>s</math>, we get <math>s = \frac{4 - \sqrt{2}}{7}</math>, so our answer is <math>4 + 7 \Rightarrow \boxed{\textbf{(E)} 11}</math>
 
Solving for <math>s</math>, we get <math>s = \frac{4 - \sqrt{2}}{7}</math>, so our answer is <math>4 + 7 \Rightarrow \boxed{\textbf{(E)} 11}</math>
 +
 +
==See Also==
 +
{{AMC12 box|year=2016|ab=A|num-b=8|num-a=10}}
 +
{{MAA Notice}}

Revision as of 11:41, 5 February 2016

Problem 9

The five small shaded squares inside this unit square are congruent and have disjoint interiors. The midpoint of each side of the middle square coincides with one of the vertices of the other four small squares as shown. The common side length is $\tfrac{a-\sqrt{2}}{b}$, where $a$ and $b$ are positive integers. What is $a+b$ ?

[asy] real x=.369; draw((0,0)--(0,1)--(1,1)--(1,0)--cycle); filldraw((0,0)--(0,x)--(x,x)--(x,0)--cycle, gray); filldraw((0,1)--(0,1-x)--(x,1-x)--(x,1)--cycle, gray); filldraw((1,1)--(1,1-x)--(1-x,1-x)--(1-x,1)--cycle, gray); filldraw((1,0)--(1,x)--(1-x,x)--(1-x,0)--cycle, gray); filldraw((.5,.5-x*sqrt(2)/2)--(.5+x*sqrt(2)/2,.5)--(.5,.5+x*sqrt(2)/2)--(.5-x*sqrt(2)/2,.5)--cycle, gray); [/asy]

$\textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11$

Solution

Let $s$ be the side length of the small squares.

The diagonal of the big square can be written in two ways: $\sqrt{2}$ and $s \sqrt{2} + s + s \sqrt{2}$.

Solving for $s$, we get $s = \frac{4 - \sqrt{2}}{7}$, so our answer is $4 + 7 \Rightarrow \boxed{\textbf{(E)} 11}$

See Also

2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png