Difference between revisions of "2003 AMC 10B Problems/Problem 20"
IequalSmart (talk | contribs) (→Solution) |
(→Solution) |
||
Line 36: | Line 36: | ||
<math>\triangle EFG \sim \triangle EAB</math> because <math>FG \parallel AB.</math> The ratio of <math>\triangle EFG</math> to <math>\triangle EAB</math> is <math>2:5</math> since <math>AB=5</math> and <math>FG=2</math> from subtraction. If we let <math>h</math> be the height of <math>\triangle EAB,</math> | <math>\triangle EFG \sim \triangle EAB</math> because <math>FG \parallel AB.</math> The ratio of <math>\triangle EFG</math> to <math>\triangle EAB</math> is <math>2:5</math> since <math>AB=5</math> and <math>FG=2</math> from subtraction. If we let <math>h</math> be the height of <math>\triangle EAB,</math> | ||
− | <cmath>\frac{2}{5} = \frac{h-3}{h} | + | <cmath>\frac{2}{5} = \frac{h-3}{h}</cmath> |
− | 2h = 5h-15 | + | <cmath>2h = 5h-15</cmath> |
− | 3h = 15 | + | <cmath>3h = 15</cmath> |
− | h = 5</cmath> | + | <cmath>h = 5</cmath> |
The height is <math>5</math> so the area of <math>\triangle EAB</math> is <math>\frac{1}{2}(5)(5) = \boxed{\textbf{(D)}\ \frac{25}{2}}</math>. | The height is <math>5</math> so the area of <math>\triangle EAB</math> is <math>\frac{1}{2}(5)(5) = \boxed{\textbf{(D)}\ \frac{25}{2}}</math>. |
Revision as of 23:00, 29 December 2015
- The following problem is from both the 2003 AMC 12B #14 and 2003 AMC 10B #20, so both problems redirect to this page.
Problem
In rectangle and
. Points
and
are on
so that
and
. Lines
and
intersect at
. Find the area of
.
Solution
![[asy] unitsize(8mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair A=(0,0), B=(5,0), C=(5,3), D=(0,3); pair F=(1,3), G=(3,3); pair E=(5/3,5); draw(A--B--C--D--cycle); draw(A--E); draw(B--E); pair[] ps={A,B,C,D,E,F,G}; dot(ps); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",E,N); label("$F$",F,SE); label("$G$",G,SW); label("$1$",midpoint(D--F),N); label("$2$",midpoint(G--C),N); label("$5$",midpoint(A--B),S); label("$3$",midpoint(A--D),W); [/asy]](http://latex.artofproblemsolving.com/1/a/c/1ac3fc6b18ce26a1ce9b9a1e0e9c2c73bed94a30.png)
because
The ratio of
to
is
since
and
from subtraction. If we let
be the height of
The height is so the area of
is
.
See Also
2003 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2003 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.