Difference between revisions of "2007 AMC 8 Problems/Problem 13"

(Solution)
(Problem)
Line 5: Line 5:
 
the number of elements in <math>A</math>.
 
the number of elements in <math>A</math>.
  
<center>[[Image:AMC8_2007_13.png]]</center>
+
<asy>
 +
defaultpen(linewidth(0.7));
 +
draw(Circle(origin, 5));
 +
draw(Circle((5,0), 5));
 +
label("$A$", (0,5), N);
 +
label("$B$", (5,5), N);
 +
label("$1001$", (2.5, -0.5), N);</asy>
  
 
<math>\mathrm{(A)}\ 503 \qquad \mathrm{(B)}\ 1006 \qquad \mathrm{(C)}\ 1504 \qquad \mathrm{(D)}\ 1507 \qquad \mathrm{(E)}\ 1510</math>
 
<math>\mathrm{(A)}\ 503 \qquad \mathrm{(B)}\ 1006 \qquad \mathrm{(C)}\ 1504 \qquad \mathrm{(D)}\ 1507 \qquad \mathrm{(E)}\ 1510</math>

Revision as of 12:20, 9 December 2012

Problem

Sets $A$ and $B$, shown in the Venn diagram, have the same number of elements. Their union has $2007$ elements and their intersection has $1001$ elements. Find the number of elements in $A$.

[asy] defaultpen(linewidth(0.7)); draw(Circle(origin, 5)); draw(Circle((5,0), 5)); label("$A$", (0,5), N); label("$B$", (5,5), N); label("$1001$", (2.5, -0.5), N);[/asy]

$\mathrm{(A)}\ 503 \qquad \mathrm{(B)}\ 1006 \qquad \mathrm{(C)}\ 1504 \qquad \mathrm{(D)}\ 1507 \qquad \mathrm{(E)}\ 1510$

Solution

Let $x$ be the number of elements in $A$ and $B$.

Since the union is the sum of all elements in $A$ and $B$,

and $A$ and $B$ have the same number of elements then,

$2x-1001 = 2007$

$2x = 3008$

$x = 1504$.

The answer is $\boxed{C}$

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions