Difference between revisions of "2003 AMC 10B Problems/Problem 1"

(Solution)
Line 14: Line 14:
 
We can rewrite the given fraction as:
 
We can rewrite the given fraction as:
  
\[\frac{-3(2)+2(7)}{3(-3)+3(7)}=\frac{2(4)}{3(4)}=\frac{2}{3} \longrightarrow \boxed{\textbf{(C)}}
+
<cmath>\frac{-3(2)+2(7)}{3(-3)+3(7)}=\frac{2(4)}{3(4)}=\frac{2}{3} \longrightarrow \boxed{\textbf{(C)}}</cmath>
 +
 
 
==See Also==
 
==See Also==
  
 
{{AMC10 box|year=2003|ab=B|before=First Question|num-a=2}}
 
{{AMC10 box|year=2003|ab=B|before=First Question|num-a=2}}
 
[[Category: Introductory Algebra Problems]]
 
[[Category: Introductory Algebra Problems]]

Revision as of 15:24, 31 May 2011

Problem

Which of the following is the same as $\dfrac{2-4+6-8+10-12+14}{3-6+9-12+15-18+21}$?

$\textbf{(A)}\ -1 \qquad \textbf{(B)}\ -\frac23 \qquad \textbf{(C)}\ \frac23 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ \frac{14}{3}$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it. We can rewrite the given fraction as:

\[\frac{-3(2)+2(7)}{3(-3)+3(7)}=\frac{2(4)}{3(4)}=\frac{2}{3} \longrightarrow \boxed{\textbf{(C)}}\]

See Also

2003 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions