Difference between revisions of "2009 AIME I Problems/Problem 13"
(New page: == Problem == The terms of the sequence <math>(a_i)</math> defined by <math>a_{n + 2} = \frac {a_n + 2009} {1 + a_{n + 1}}</math> for <math>n \ge 1</math> are positive integers. Find the m...) |
(→Solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
+ | <math>a_{n + 2} = \frac {a_n + 2009} {1 + a_{n + 1}}</math> | ||
+ | |||
+ | |||
+ | <math>a_{n + 2}(1 + a_{n + 1})= a_n + 2009</math> | ||
+ | |||
+ | |||
+ | <math>a_{n + 2}+a_{n + 2} a_{n + 1}-a_n= 2009</math> | ||
+ | |||
+ | |||
+ | let put <math>n+1</math> into <math>n</math> now | ||
+ | |||
+ | |||
+ | <math>a_{n + 3}+a_{n + 3} a_{n + 2}-a_{n+1}= 2009</math> | ||
+ | |||
+ | |||
+ | and set them equal now | ||
+ | |||
+ | |||
+ | <math>a_{n + 3}+a_{n + 3} a_{n + 2}-a_{n+1}= a_{n + 2}+a_{n + 2} a_{n + 1}-a_n</math> | ||
+ | |||
+ | |||
+ | <math>a_{n + 3}-a_{n+1}+a_{n + 3} a_{n + 2}-a_{n + 2} a_{n + 1}= a_{n + 2}-a_n</math> | ||
+ | |||
+ | |||
+ | let's rewrite it | ||
+ | |||
+ | |||
+ | <math>(a_{n + 3}-a_{n+1})(a_{n + 2}+1)= a_{n + 2}-a_n</math> | ||
+ | |||
+ | |||
+ | Let make it looks nice and let <math>b_n=a_{n + 2}-a_n</math> | ||
+ | |||
+ | |||
+ | <math>(b_{n+1})(a_{n + 2}+1)= b_n</math> | ||
+ | |||
+ | |||
+ | Since <math>b_n</math> and <math>b_{n+1}</math> are integer, we can see <math>b_{n+1}</math> is divisible by <math>b_n</math> | ||
+ | |||
+ | |||
+ | But we can't have an infinite sequence of proper factors, unless <math>b_n=0</math> | ||
+ | |||
+ | |||
+ | Thus, <math>a_{n + 2}-a_n=0</math> | ||
+ | |||
+ | |||
+ | <math>a_{n + 2}=a_n</math> | ||
+ | |||
+ | |||
+ | So now, we know <math>a_3=a_1</math> | ||
+ | |||
+ | |||
+ | <math>a_{3} = \frac {a_1 + 2009} {1 + a_{2}}</math> | ||
+ | |||
+ | |||
+ | <math>a_{1} = \frac {a_1 + 2009} {1 + a_{2}}</math> | ||
+ | |||
+ | |||
+ | <math>a_{1}+a_{1}a_{2} = a_1 + 2009</math> | ||
+ | |||
+ | |||
+ | <math>a_{1}a_{2} = 2009</math> | ||
+ | |||
+ | |||
+ | To minimize <math>a_{1}+a_{2}</math>, we need <math>41 and 49</math> | ||
+ | |||
+ | |||
+ | Thus, answer <math>= 41+49=\boxed {090}</math> | ||
== See also == | == See also == | ||
{{AIME box|year=2009|n=I|num-b=12|num-a=14}} | {{AIME box|year=2009|n=I|num-b=12|num-a=14}} |
Revision as of 22:11, 20 March 2009
Problem
The terms of the sequence defined by for are positive integers. Find the minimum possible value of .
Solution
let put into now
and set them equal now
let's rewrite it
Let make it looks nice and let
Since and are integer, we can see is divisible by
But we can't have an infinite sequence of proper factors, unless
Thus,
So now, we know
To minimize , we need
Thus, answer
See also
2009 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |