Difference between revisions of "2003 AIME I Problems/Problem 12"
({{img}}) |
(→Solution: construct asy using x = 160) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | |||
− | |||
<center><asy> | <center><asy> | ||
− | pair A=(0,0),B=(1.8,0); | + | real x = 1.60; /* arbitrary */ |
− | </asy></center | + | |
+ | pointpen = black; pathpen = black+linewidth(0.7); size(180); | ||
+ | real BD = x*x + 1.80*1.80 - 2 * 1.80 * x * 7 / 9; | ||
+ | pair A=(0,0),B=(1.8,0),D=IP(CR(A,x),CR(B,BD)),C=OP(CR(D,1.8),CR(B,2.80 - x)); | ||
+ | D(MP("A",A)--MP("B",B)--MP("C",C)--MP("D",D,N)--B--A--D); | ||
+ | MP("180",(A+B)/2); MP("180",(C+D)/2,NE); D(anglemark(B,A,D)); D(anglemark(D,C,B)); | ||
+ | </asy></center> | ||
Let <math>AD = x</math> so <math>BC = 640 - 360 - x = 280 - x</math>. By the [[Law of Cosines]] in <math>\triangle ABD</math> at angle <math>A</math> and in <math>\triangle BCD</math> at angle <math>C</math>, | Let <math>AD = x</math> so <math>BC = 640 - 360 - x = 280 - x</math>. By the [[Law of Cosines]] in <math>\triangle ABD</math> at angle <math>A</math> and in <math>\triangle BCD</math> at angle <math>C</math>, |
Revision as of 15:59, 11 June 2008
Problem
In convex quadrilateral and The perimeter of is 640. Find (The notation means the greatest integer that is less than or equal to )
Solution
Let so . By the Law of Cosines in at angle and in at angle , Then and grouping the terms gives .
Since , and thus so and so .
See also
2003 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |