Difference between revisions of "2003 AIME I Problems/Problem 12"

m
({{img}})
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
Let <math>AD = x</math> so <math>BC = 640 - 360 - x = 280 - x</math>. Let <math>BD = d</math> so by the [[Law of Cosines]] in <math>\triangle ABD</math> at [[angle]] <math>A</math> and in <math>\triangle BCD</math> at angle <math>C</math>,  
+
{{image}}
<math>180^2 + x^2 - 2\cdot180 \cdot x \cdot \cos A = d^2 = 180^2 + (280 - x)^2 - 2\cdot180\cdot(280 - x) \cdot \cos A</math>. Then
+
<!--
 +
<center><asy>
 +
pair A=(0,0),B=(1.8,0);
 +
</asy></center>-->
 +
 
 +
Let <math>AD = x</math> so <math>BC = 640 - 360 - x = 280 - x</math>. By the [[Law of Cosines]] in <math>\triangle ABD</math> at angle <math>A</math> and in <math>\triangle BCD</math> at angle <math>C</math>,  
 +
<cmath>180^2 + x^2 - 2\cdot180 \cdot x \cdot \cos A = BD^2 = 180^2 + (280 - x)^2 - 2\cdot180\cdot(280 - x) \cdot \cos A.</cmath>  Then
 
<math>x^2 - 360x\cos A = (280 -x)^2 -360(280 - x)\cos A</math> and grouping the <math>\cos A</math> terms gives
 
<math>x^2 - 360x\cos A = (280 -x)^2 -360(280 - x)\cos A</math> and grouping the <math>\cos A</math> terms gives
 
<math>360(280 - 2x)\cos A = 280(280 - 2x)</math>.
 
<math>360(280 - 2x)\cos A = 280(280 - 2x)</math>.
  
 
Since <math>x \neq 280 - x</math>, <math>280 - 2x \neq 0</math> and thus
 
Since <math>x \neq 280 - x</math>, <math>280 - 2x \neq 0</math> and thus
<math>360\cos A = 280</math> so <math>\cos A = \frac{7}{9} = 0.7777\ldots</math> and so <math>\lfloor 1000\cos A\rfloor = 777</math>.
+
<math>360\cos A = 280</math> so <math>\cos A = \frac{7}{9} = 0.7777\ldots</math> and so <math>\lfloor 1000\cos A\rfloor = \boxed{777}</math>.
  
 
== See also ==
 
== See also ==
* [[2003 AIME I Problems/Problem 11 | Previous problem]]
+
{{AIME box|year=2003|n=I|num-b=11|num-a=13}}
* [[2003 AIME I Problems/Problem 13 | Next problem]]
 
* [[2003 AIME I Problems]]
 
  
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]

Revision as of 15:46, 10 June 2008

Problem

In convex quadrilateral $ABCD, \angle A \cong \angle C, AB = CD = 180,$ and $AD \neq BC.$ The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor.$ (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x.$)

Solution


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Let $AD = x$ so $BC = 640 - 360 - x = 280 - x$. By the Law of Cosines in $\triangle ABD$ at angle $A$ and in $\triangle BCD$ at angle $C$, \[180^2 + x^2 - 2\cdot180 \cdot x \cdot \cos A = BD^2 = 180^2 + (280 - x)^2 - 2\cdot180\cdot(280 - x) \cdot \cos A.\] Then $x^2 - 360x\cos A = (280 -x)^2 -360(280 - x)\cos A$ and grouping the $\cos A$ terms gives $360(280 - 2x)\cos A = 280(280 - 2x)$.

Since $x \neq 280 - x$, $280 - 2x \neq 0$ and thus $360\cos A = 280$ so $\cos A = \frac{7}{9} = 0.7777\ldots$ and so $\lfloor 1000\cos A\rfloor = \boxed{777}$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions