Difference between revisions of "2025 AMC 8 Problems/Problem 5"

(Problem)
Line 38: Line 38:
  
 
<math>\textbf{(A)}\ 20 \qquad \textbf{(B)}\ 22 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 26\qquad \textbf{(E)}\ 28</math>
 
<math>\textbf{(A)}\ 20 \qquad \textbf{(B)}\ 22 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 26\qquad \textbf{(E)}\ 28</math>
 +
 +
==Solution 1==
 +
 +
Each shortest possible path from <math>A</math> to <math>B</math> follows the edges of the rectangle. The following path outlines a path of <math>\boxed{24}</math> units:
 +
 +
<asy>
 +
 +
unitsize(20);
 +
 +
add(grid(8,6));
 +
draw((6,5)--(7,5)--(7,0)--(0,0)--(0,4)--(2,4)--(2,5)--cycle,green);
 +
 +
path w = circle((0,0),0.4);
 +
 +
fill(w, white);
 +
draw(w);
 +
label("$B$",(0,0));
 +
 +
fill(shift((2,4)) * w, white);
 +
draw(shift((2,4)) * w);
 +
label("$C$",(2,4));
 +
 +
fill(shift((7,3)) * w, white);
 +
draw(shift((7,3)) * w);
 +
label("$A$",(7,3));
 +
 +
fill(shift((6,5)) * w, white);
 +
draw(shift((6,5)) * w);
 +
label("$F$",(6,5));
 +
 +
</asy>
  
 
==Video Solution by Daily Dose of Math==
 
==Video Solution by Daily Dose of Math==

Revision as of 20:23, 30 January 2025

Problem

Betty drives a truck to deliver packages in a neighborhood whose street map is shown below. Betty starts at the factory (labled $F$) and drives to location $A$, then $B$, then $C$, before returning to $F$. What is the shortest distance, in blocks, she can drive to complete the route?

[asy]  unitsize(20);  add(grid(8,6));  path w = circle((0,0),0.4);  fill(w, white); draw(w); label("$B$",(0,0));  fill(shift((2,4)) * w, white); draw(shift((2,4)) * w); label("$C$",(2,4));  fill(shift((7,3)) * w, white); draw(shift((7,3)) * w); label("$A$",(7,3));  fill(shift((6,5)) * w, white); draw(shift((6,5)) * w); label("$F$",(6,5));  draw((6,-0.2)--(7,-0.2), EndArrow(3)); draw((7,-0.2)--(6,-0.2), EndArrow(3)); draw(shift(6.5, -0.48) * scale(0.03) * texpath("1 block"));  draw((8.2,1)--(8.2,2), EndArrow(3)); draw((8.2,2)--(8.2,1), EndArrow(3)); draw(shift(8.88, 1.5) * scale(0.03) * texpath("1 block"));  [/asy]

$\textbf{(A)}\ 20 \qquad \textbf{(B)}\ 22 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 26\qquad \textbf{(E)}\ 28$

Solution 1

Each shortest possible path from $A$ to $B$ follows the edges of the rectangle. The following path outlines a path of $\boxed{24}$ units:

[asy]  unitsize(20);  add(grid(8,6)); draw((6,5)--(7,5)--(7,0)--(0,0)--(0,4)--(2,4)--(2,5)--cycle,green);  path w = circle((0,0),0.4);  fill(w, white); draw(w); label("$B$",(0,0));  fill(shift((2,4)) * w, white); draw(shift((2,4)) * w); label("$C$",(2,4));  fill(shift((7,3)) * w, white); draw(shift((7,3)) * w); label("$A$",(7,3));  fill(shift((6,5)) * w, white); draw(shift((6,5)) * w); label("$F$",(6,5));  [/asy]

Video Solution by Daily Dose of Math

https://youtu.be/rjd0gigUsd0

~Thesmartgreekmathdude

Video Solution by Thinking Feet

https://youtu.be/PKMpTS6b988

See Also

2025 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png