Difference between revisions of "2022 AIME II Problems/Problem 5"
m (→Solution 2) |
m (→Video Solution by Power of Logic) |
||
Line 28: | Line 28: | ||
==Video Solution by Power of Logic== | ==Video Solution by Power of Logic== | ||
− | https://youtu.be/ | + | https://youtu.be/iI2ZpdpGNyc |
==See Also== | ==See Also== | ||
{{AIME box|year=2022|n=II|num-b=4|num-a=6}} | {{AIME box|year=2022|n=II|num-b=4|num-a=6}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 15:04, 16 January 2024
Problem
Twenty distinct points are marked on a circle and labeled through in clockwise order. A line segment is drawn between every pair of points whose labels differ by a prime number. Find the number of triangles formed whose vertices are among the original points.
Solution 1
Let , , and be the vertex of a triangle that satisfies this problem, where .
. Because is the sum of two primes, and , or must be . Let , then . There are only primes less than : . Only plus equals another prime. .
Once is determined, and . There are values of where , and values of . Therefore the answer is
Solution 2
As above, we must deduce that the sum of two primes must be equal to the third prime. Then, we can finish the solution using casework. If the primes are , then the smallest number can range between and . If the primes are , then the smallest number can range between and . If the primes are , then the smallest number can range between and . If the primes are , then the smallest number can only be .
Adding all cases gets . However, due to the commutative property, we must multiply this by 2. For example, in the case the numbers can be or . Therefore the answer is .
Note about solution 1: I don't think that works, because if for example there are 21 points on the circle, your solution would yield , but there would be more solutions than if there are points. This is because the upper bound for each case increases by , but commutative property doubles it to be .
Video Solution by Power of Logic
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.