Difference between revisions of "2023 AMC 12A Problems/Problem 22"

Line 70: Line 70:
  
 
~ZZZIIIVVV
 
~ZZZIIIVVV
 
==Solution==
 
 
Consider any <math>n \in \Bbb N</math> with prime factorization <math>n = \Pi_{i=1}^k p_i^{\alpha_i}</math>.
 
Thus, the equation given in this problem can be equivalently written as
 
<cmath>
 
\[
 
\sum_{\beta_1 = 0}^{\alpha_1}
 
\sum_{\beta_2 = 0}^{\alpha_2}
 
\cdots
 
\sum_{\beta_k = 0}^{\alpha_k}
 
\Pi_{i=1}^k p_i^{\alpha_i - \beta_i}
 
\cdot
 
f \left( \Pi_{i=1}^k p_i^{\beta_i} \right)
 
= 1 .
 
\]
 
</cmath>
 
 
\noindent \textbf{Special case 1}: <math>n = 1</math>.
 
 
We have <math>f \left( 1 \right) = 1</math>.
 
 
\noindent \textbf{Special case 2}: <math>n</math> is a prime.
 
 
We have
 
<cmath>
 
\[
 
1 \cdot f \left( n \right) + n \cdot f \left( 1 \right) = 1 .
 
\]
 
</cmath>
 
 
Thus, <math>f \left( n \right) = 1 - n</math>.
 
 
\noindent \textbf{Special case 3}: <math>n</math> is the square of a prime, <math>n = p_1^2</math>.
 
 
We have
 
<cmath>
 
\[
 
1 \cdot f \left( p_1^2 \right) + p_1 \cdot f \left( p_1 \right) + p_1^2 \cdot f \left( 1 \right) = 1.
 
\]
 
</cmath>
 
 
Thus, <math>f \left( p_1^2 \right) = 1 - p_1</math>.
 
 
\noindent \textbf{Special case 4}: <math>n</math> is the product of two distinct primes, <math>n = p_1 p_2</math>.
 
 
We have
 
<cmath>
 
\[
 
1 \cdot f \left( p_1 p_2 \right) + p_1 \cdot f \left( p_2 \right) + p_2 \cdot f \left( p_1 \right) + p_1 p_2 \cdot f \left( 1 \right) = 1.
 
\]
 
</cmath>
 
 
Thus, <math>f \left( p_1 p_2 \right) = 1 - p_1 - p_2 + p_1 p_2</math>.
 
 
\noindent \textbf{Special case 5}: <math>n</math> takes the form <math>n = p_1^2 p_2</math>, where <math>p_1</math> and <math>p_2</math> are two distinct primes.
 
 
We have
 
<cmath>
 
\[
 
1 \cdot f \left( p_1^2 p_2 \right) + p_1 \cdot f \left( p_1 p_2 \right) + p_1^2 \cdot f \left( p_2 \right) + p_2 \cdot f \left( p_1^2 \right)
 
+ p_1 p_2 f \left( p_1 \right) + p_1^2 p_2 f \left( 1 \right) = 1.
 
\]
 
</cmath>
 
 
Thus, <math>f \left( p_1^2 p_2 \right) = 1 - p_1 - p_2 + p_1 p_2</math>.
 
 
The prime factorization of 2023 is <math>7 \cdot 17^2</math>.
 
Therefore,
 
<cmath>
 
\begin{align*}
 
f \left( 2023 \right) & = 1 - 7 - 17 + 7 \cdot 17 \\
 
& = \boxed{\textbf{(B) 96}}.
 
\end{align*}
 
</cmath>
 
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
  
 
==Video Solution by MOP 2024==
 
==Video Solution by MOP 2024==

Revision as of 17:40, 10 November 2023

Problem

Let $f$ be the unique function defined on the positive integers such that \[\sum_{d\mid n}d\cdot f\left(\frac{n}{d}\right)=1\] for all positive integers $n$. What is $f(2023)$?

$\textbf{(A)}~-1536\qquad\textbf{(B)}~96\qquad\textbf{(C)}~108\qquad\textbf{(D)}~116\qquad\textbf{(E)}~144$

Solution 1 (Very Thorough)

First, we note that $f(1) = 1$, since the only divisor of $1$ is itself.


Then, let's look at $f(p)$ for $p$ a prime. We see that \[\sum_{d \mid p} d \cdot f\left(\frac{p}{d}\right) = 1\] \[1 \cdot f(p) + p \cdot f(1) = 1\] \[f(p) = 1 - p \cdot f(1)\] \[f(p) = 1-p\] Nice.

Now consider $f(p^k)$, for $k \in \mathbb{N}$. \[\sum_{d \mid p^k} d \cdot f\left(\frac{p^k}{d}\right) = 1\] \[1 \cdot f(p^k) + p \cdot f(p^{k-1}) + p^2 \cdot f(p^{k-2}) + \dotsc + p^k f(1) = 1\].


It can be (strongly) inductively shown that $f(p^k) = f(p) = 1-p$. Here's how.

We already showed $k=1$ works. Suppose it holds for $k = n$, then

\[1 \cdot f(p^n) + p \cdot f(p^{n-1}) + p^2 \cdot f(p^{n-2}) + \dotsc + p^n f(1) = 1 \implies f(p^m) = 1-p \; \forall \; m \leqslant n\]

For $k = n+1$, we have

\[1 \cdot f(p^{n+1}) + p \cdot f(p^{n}) + p^2 \cdot f(p^{n-1}) + \dotsc + p^{n+1} f(1) = 1\], then using $f(p^m) = 1-p \; \forall \; m \leqslant n$, we simplify to

\[1 \cdot f(p^{n+1}) + p \cdot (1-p) + p^2 \cdot (1-p) + \dotsc + p^n \cdot (1-p) + p^{n+1} f(1) = 1\] \[f(p^{n+1}) + \sum_{i=1}^n p^i (1-p) + p^{n+1} = 1\] \[f(p^{n+1}) + p(1 - p^n) + p^{n+1} = 1\] \[f(p^{n+1}) + p = 1 \implies f(p^{n+1}) = 1-p\].

Very nice! Now, we need to show that this function is multiplicative, i.e. $f(pq) = f(p) \cdot f(q)$ for $p,q$ prime. It's pretty standard, let's go through it quickly. \[\sum_{d \mid pq} d \cdot f\left(\frac{pq}{d}\right) = 1\] \[1 \cdot f(pq) + p \cdot f(q) + q \cdot f(p) + pq \cdot f(1) = 1\] Using our formulas from earlier, we have \[f(pq) + p(1-q) + q(1-p) + pq = 1 \implies f(pq) = 1 - p(1-q) - q(1-p) - pq = (1-p)(1-q) = f(p) \cdot f(q)\]

Great! We're almost done now. Let's actually plug in $2023 = 7 \cdot 17^2$ into the original formula. \[\sum_{d \mid 2023} d \cdot f\left(\frac{2023}{d}\right) = 1\] \[1 \cdot f(2023) + 7 \cdot f(17^2) + 17 \cdot f(7 \cdot 17) + 7 \cdot 17 \cdot f(17) + 17^2 \cdot f(7) + 7 \cdot 17^2 \cdot f(1) = 1\] Let's use our formulas! We know \[f(7) = 1-7 = -6\] \[f(17) = 1-17 = -16\] \[f(7 \cdot 17) = f(7) \cdot f(17) = (-6) \cdot (-16) = 96\] \[f(17^2) = f(17) = -16\]

So plugging ALL that in, we have \[f(2023) = 1 - \left(7 \cdot (-16) + 17 \cdot (-6) \cdot (-16) + 7 \cdot 17 \cdot (-16) + 17^2 \cdot (-6) + 7 \cdot 17^2\right)\] which, be my guest simplifying, is $\boxed{\textbf{(B)} \ 96}$

~ $\color{magenta} zoomanTV$

Solution 2

First, change the problem into an easier form. \[\sum_{d\mid n}d\cdot f(\frac{n}{d} )=\sum_{d\mid n}\frac{n}{d}f(d)=1\] So now we get \[\frac{1}{n}= \sum_{d\mid n}\frac{f(d)}{d}\] Also, notice that both $\frac{f(d)}{d}$ and $\frac{1}{n}$ are arithmetic functions. Applying Möbius inversion formula, we get \[\frac{f(n)}{n}=\sum_{d\mid n}\frac{ \mu (d) }{\frac{n}{d} }=\frac{1}{n} \sum_{d\mid n}d\cdot \mu (d)\] So \[f(n)=1-p_1-p_2-...+p_1p_2+...=(1-p_1)(1-p_2)...=\prod_{p\mid n}(1-p)\] So the answer should be $f(2023)=\prod_{p\mid 2023}(1-p)=(1-7)(1-17)=\boxed{\textbf{(B)} \ 96}$

~ZZZIIIVVV

Video Solution by MOP 2024

https://YouTube.com/watch?v=gdhVqdRhMsQ

~r00tsOfUnity

Video Solution by OmegaLearn

https://youtu.be/Trz8DEmgAtk


See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png