Difference between revisions of "2023 AMC 12A Problems/Problem 13"
m |
m (adding a video solution i bumped into) |
||
Line 23: | Line 23: | ||
== Video Solution 1 by OmegaLearn == | == Video Solution 1 by OmegaLearn == | ||
https://youtu.be/BXgQIV2WbOA | https://youtu.be/BXgQIV2WbOA | ||
+ | |||
+ | == Video Solution 2 by TheBeautyofMath == | ||
+ | https://www.youtube.com/watch?v=sLtsF1k9Fx8&t=227s | ||
==See Also== | ==See Also== |
Revision as of 14:17, 10 November 2023
- The following problem is from both the 2023 AMC 10A #16 and 2023 AMC 12A #13, so both problems redirect to this page.
Contents
Problem
In a table tennis tournament every participant played every other participant exactly once. Although there were twice as many right-handed players as left-handed players, the number of games won by left-handed players was more than the number of games won by right-handed players. (There were no ties and no ambidextrous players.) What is the total number of games played?
Solution 1 (3 min solve)
We know that the total amount of games must be the sum of games won by left and right handed players. Then, we can write , and since , . Given that and are both integers, also must be an integer. From here we can see that must be divisible by 12, leaving only answers B and D. Now we know the formula for how many games are played in this tournament is , the sum of the first triangular numbers. Now setting 36 and 48 equal to the equation will show that two consecutive numbers must equal 72 or 96. Clearly , so the answer is .
~~ Antifreeze5420
Solution 2
First, we know that every player played every other player, so there's a total of games, since each pair of players forms a bijection to a game. Also, if we assume the right-handed players won a total of games, the left-handed players must have won a total of games, meaning that the total number of games played was . Thus, the total number of games must be divisible by .
Then, we examine the answer choices and see which choices are divisible by . It turns out that only satisfies our constraints.
Solution 3
Let be the amount of games the right-handed won. Since the left-handed won games, the total number of games played can be expressed as , or , meaning that the answer is divisible by 12. This brings us down to two answer choices, and . We note that the answer is some number choose . This means the answer is in the form . Since answer choice D gives , and has no integer solutions, we know that is the only possible choice.
Video Solution 1 by OmegaLearn
Video Solution 2 by TheBeautyofMath
https://www.youtube.com/watch?v=sLtsF1k9Fx8&t=227s
See Also
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.