Difference between revisions of "2023 AMC 12A Problems/Problem 25"

(Solution 1)
Line 9: Line 9:
 
==Solution 1==
 
==Solution 1==
  
<cmath>\tan2023x = \frac{ \sin2023x }{ \cos2023x }</cmath>
+
<cmath>(\cos x + i \sin x)^{2023} = \cos 2023 x + i \sin 2023 x</cmath>
  
<cmath>(\cos x + i \sin x)^{2023}</cmath>
+
<cmath>
 +
\begin{align*}
 +
\cos 2023 x + i \sin 2023 x
 +
&= (\cos x + i \sin x)^{2023}\\
 +
&= \cos^{2023} x + \binom{2023}{1} \cos^{2022} x (i\sin x) + \binom{2023}{2} \cos^{2021} x (i \sin x)^{2} +\binom{2023}{3} \cos^{2023} x (i \sin x)^{3}\\
 +
&+ \dots + \binom{2023}{2022} \cos x (i \sin x)^{2022} + (i \sin x)^{2023}\\
 +
&= \cos^{2023} x + i \binom{2023}{1} \cos^{2022} x \sin x - \binom{2023}{2} \cos^{2021} x \sin^{2} x - i\binom{2023}{3} \cos^{2020} x \sin^{3} x + \dots\\
 +
&- \binom{2023}{2022} \cos x \sin^{2022} x - i \sin^{2023} x\\
 +
\end{align*}</cmath>
 +
 
 +
By equating real and imaginary parts:
 +
 
 +
<cmath>\cos 2023 x = \cos^{2023} x - \binom{2023}{2} \cos^{2021} x \sin^{2} x + \dots - \binom{2023}{2022} \cos x \sin^{2022} x</cmath>
 +
 
 +
<cmath>\sin 2023 x = \binom{2023}{1} \cos^{2022} x \sin x - \binom{2023}{3} \cos^{2020} x \sin^{3} x + \dots - \sin^{2023} x</cmath>
 +
 
 +
<cmath>
 +
\begin{align*}
 +
\tan2023x
 +
&= \frac{ \sin2023x }{ \cos2023x } = \frac{ \binom{2023}{1} \cos^{2022} x \sin x - \binom{2023}{3} \cos^{2020} x \sin^{3} x + \dots - \sin^{2023} x }{ \cos^{2023} x - \binom{2023}{2} \cos^{2021} x \sin^{2} x + \dots - \binom{2023}{2022} \cos x \sin^{2022} x }\\
 +
&= \frac{ \binom{2023}{1} \frac{\cos^{2022} x \sin x}{\sin^{2023} x} - \binom{2023}{3} \frac{\cos^{2020} x \sin^{3} x}{\sin^{2023} x} + \dots - \frac{\sin^{2023} x}{\sin^{2023} x} }{ \frac{\cos^{2023} x}{\sin^{2023} x} - \binom{2023}{2} \frac{\cos^{2021} x \sin^{2} x}{\sin^{2023} x} + \dots - \binom{2023}{2022} \frac{\cos x \sin^{2022} x}{\sin^{2023} x}
 +
}\\
 +
&= \frac{ \binom{2023}{1} \tan x - \binom{2023}{3} \tan^{3}x + \dots - \tan^{2023}x }{ \tan^{2023}x - \binom{2023}{2} \tan^{2021}x + \dots - \binom{2023}{2022} \tan x }\\
 +
\end{align*}</cmath>
 +
 
 +
$<cmath>a_{2023}? = \boxed{\textbf{(C) } -1</cmath>
  
 
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]

Revision as of 10:00, 10 November 2023

Problem

There is a unique sequence of integers $a_1, a_2, \cdots a_{2023}$ such that \[\tan2023x = \frac{a_1 \tan x + a_3 \tan^3 x + a_5 \tan^5 x + \cdots + a_{2023} \tan^{2023} x}{1 + a_2 \tan^2 x + a_4 \tan^4 x \cdots + a_{2022} \tan^{2022} x}\]whenever $\tan 2023x$ is defined. What is $a_{2023}?$

$\textbf{(A) } -2023 \qquad\textbf{(B) } -2022 \qquad\textbf{(C) } -1 \qquad\textbf{(D) } 1 \qquad\textbf{(E) } 2023$

Solution 1

\[(\cos x + i \sin x)^{2023} = \cos 2023 x + i \sin 2023 x\]

\begin{align*} \cos 2023 x + i \sin 2023 x &= (\cos x + i \sin x)^{2023}\\ &= \cos^{2023} x + \binom{2023}{1} \cos^{2022} x (i\sin x) + \binom{2023}{2} \cos^{2021} x (i \sin x)^{2} +\binom{2023}{3} \cos^{2023} x (i \sin x)^{3}\\ &+ \dots + \binom{2023}{2022} \cos x (i \sin x)^{2022} + (i \sin x)^{2023}\\ &= \cos^{2023} x + i \binom{2023}{1} \cos^{2022} x \sin x - \binom{2023}{2} \cos^{2021} x \sin^{2} x - i\binom{2023}{3} \cos^{2020} x \sin^{3} x + \dots\\ &- \binom{2023}{2022} \cos x \sin^{2022} x - i \sin^{2023} x\\ \end{align*}

By equating real and imaginary parts:

\[\cos 2023 x = \cos^{2023} x - \binom{2023}{2} \cos^{2021} x \sin^{2} x + \dots - \binom{2023}{2022} \cos x \sin^{2022} x\]

\[\sin 2023 x = \binom{2023}{1} \cos^{2022} x \sin x - \binom{2023}{3} \cos^{2020} x \sin^{3} x + \dots - \sin^{2023} x\]

\begin{align*} \tan2023x  &= \frac{ \sin2023x }{ \cos2023x } = \frac{ \binom{2023}{1} \cos^{2022} x \sin x - \binom{2023}{3} \cos^{2020} x \sin^{3} x + \dots - \sin^{2023} x }{ \cos^{2023} x - \binom{2023}{2} \cos^{2021} x \sin^{2} x + \dots - \binom{2023}{2022} \cos x \sin^{2022} x }\\ &= \frac{ \binom{2023}{1} \frac{\cos^{2022} x \sin x}{\sin^{2023} x} - \binom{2023}{3} \frac{\cos^{2020} x \sin^{3} x}{\sin^{2023} x} + \dots - \frac{\sin^{2023} x}{\sin^{2023} x} }{ \frac{\cos^{2023} x}{\sin^{2023} x} - \binom{2023}{2} \frac{\cos^{2021} x \sin^{2} x}{\sin^{2023} x} + \dots - \binom{2023}{2022} \frac{\cos x \sin^{2022} x}{\sin^{2023} x}  }\\ &= \frac{ \binom{2023}{1} \tan x - \binom{2023}{3} \tan^{3}x + \dots - \tan^{2023}x }{ \tan^{2023}x - \binom{2023}{2} \tan^{2021}x + \dots - \binom{2023}{2022} \tan x }\\ \end{align*}

$

\[a_{2023}? = \boxed{\textbf{(C) } -1\] (Error compiling LaTeX. Unknown error_msg)

~isabelchen

Solution 2 (Formula of tan(x))

Note that $\tan{kx} = \frac{\binom{k}{1}\tan{x} - \binom{k}{3}\tan^{3}{x} + \cdots \pm \binom{k}{k}\tan^{k}{x}}{\binom{k}{0}\tan^{0}{x} - \binom{k}{2}\tan^{2}{x} + \cdots + \binom{k}{k-1}\tan^{k-1}{x}}$, where k is odd and the sign of each term alternates between positive and negative. To realize this during the test, you should know the formulas of $\tan{2x}, \tan{3x},$ and $\tan{4x}$, and can notice the pattern from that. The expression given essentially matches the formula of $\tan{kx}$ exactly. $a_{2023}$ is evidently equivalent to $\pm\binom{2023}{2023}$, or 1. However, it could be positive or negative. Notice that in the numerator, whenever the exponent of the tangent term is congruent to 1 mod 4, the term is positive. Whenever the exponent of the tangent term is 3 mod 4, the term is negative. 2023, which is assigned to k, is congruent to 3 mod 4. This means that the term of $\binom{k}{k}\tan^{k}{x}$ is $\boxed{\textbf{(C) } -1}$.


Notice: If you have time and don't know $\tan{3x}$ and $\tan{4x}$, you'd have to keep deriving $\tan{kx}$ until you see the pattern.

~lprado

Video Solution 1 by OmegaLearn

https://youtu.be/4KJR_1Kg4A4


See Also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png