Difference between revisions of "2023 AMC 12A Problems/Problem 12"
(→Solution 1) |
(→Solution 1) |
||
Line 19: | Line 19: | ||
<math>=\frac{18(18+1)(36+1)}{6}+1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math> | <math>=\frac{18(18+1)(36+1)}{6}+1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math> | ||
− | we could rewrite the second part as <math>(2n-1)(2n), (1 \leq n \leq 9) | + | we could rewrite the second part as <math>(2n-1)(2n), (1 \leq n \leq 9)</math> |
− | < | + | <math>(2n-1)(2n)=4n^2-2n</math> |
<math>4n^2=4(\frac{9(9+1)(18+1)}{6})</math> <math>-2n=-2(\frac{9(9+1)}{2})</math> | <math>4n^2=4(\frac{9(9+1)(18+1)}{6})</math> <math>-2n=-2(\frac{9(9+1)}{2})</math> | ||
Line 28: | Line 28: | ||
<math>1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math> | <math>1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math> | ||
+ | |||
<math>=4(\frac{9(9+1)(18+1)}{6})-2(\frac{9(9+1)}{2})</math> | <math>=4(\frac{9(9+1)(18+1)}{6})-2(\frac{9(9+1)}{2})</math> | ||
+ | |||
+ | Adding everything up: | ||
+ | |||
+ | <math>2^3-1^3+4^3-3^3+6^3-5^3+...+18^3-17^3</math> | ||
+ | <math>=\frac{18(18+1)(36+1)}{6}+4(\frac{9(9+1)(18+1)}{6})-2(\frac{9(9+1)}{2})</math> | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2023|ab=A|num-b=11|num-a=13}} | {{AMC12 box|year=2023|ab=A|num-b=11|num-a=13}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:07, 9 November 2023
Problem
What is the value of
Solution 1
To solve this problem, we will be using difference of cube, sum of squares and sum of arithmetic sequence formulas
we could rewrite the second part as
Hence,
Adding everything up:
See also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.