Difference between revisions of "2023 AMC 12A Problems/Problem 12"
(→Solution 1) |
(→Solution 1) |
||
Line 16: | Line 16: | ||
<math>=1^2+2^2+3^2+4^2+5^2+6^2...+17^2+18^2+1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math> | <math>=1^2+2^2+3^2+4^2+5^2+6^2...+17^2+18^2+1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math> | ||
+ | |||
+ | <math>=\frac{18(18+1)(36+1)}{6}+1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math> | ||
+ | |||
+ | we could rewrite the second part as <math>(2n-1)(2n), (1 \leq n \leq 9) | ||
+ | |||
+ | </math>(2n-1)(2n)=4n^2-2n | ||
+ | |||
+ | <math>4n^2=4(\frac{9(9+1)(18+1)}{6})</math> <math>-2n=-2(\frac{9(9+1)}{2})</math> | ||
+ | |||
+ | Hence, | ||
+ | |||
+ | <math>1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math> | ||
+ | <math>=4(\frac{9(9+1)(18+1)}{6})-2(\frac{9(9+1)}{2})</math> | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2023|ab=A|num-b=11|num-a=13}} | {{AMC12 box|year=2023|ab=A|num-b=11|num-a=13}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:05, 9 November 2023
Problem
What is the value of
Solution 1
To solve this problem, we will be using difference of cube, sum of squares and sum of arithmetic sequence formulas
we could rewrite the second part as (2n-1)(2n)=4n^2-2n
Hence,
See also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.