Difference between revisions of "2023 AMC 12A Problems/Problem 12"

(Solution 1)
(Solution 1)
Line 16: Line 16:
  
 
<math>=1^2+2^2+3^2+4^2+5^2+6^2...+17^2+18^2+1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math>
 
<math>=1^2+2^2+3^2+4^2+5^2+6^2...+17^2+18^2+1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math>
 +
 +
<math>=\frac{18(18+1)(36+1)}{6}+1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math>
 +
 +
we could rewrite the second part as <math>(2n-1)(2n), (1 \leq n \leq 9)
 +
 +
</math>(2n-1)(2n)=4n^2-2n
 +
 +
<math>4n^2=4(\frac{9(9+1)(18+1)}{6})</math> <math>-2n=-2(\frac{9(9+1)}{2})</math>
 +
 +
Hence,
 +
 +
<math>1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18</math>
 +
<math>=4(\frac{9(9+1)(18+1)}{6})-2(\frac{9(9+1)}{2})</math>
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2023|ab=A|num-b=11|num-a=13}}
 
{{AMC12 box|year=2023|ab=A|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:05, 9 November 2023

Problem

What is the value of \[2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + \dots + 18^3 - 17^3?\]

$\textbf{(A) } 2023 \qquad\textbf{(B) } 2679 \qquad\textbf{(C) } 2941 \qquad\textbf{(D) } 3159 \qquad\textbf{(E) } 3235$

Solution 1

To solve this problem, we will be using difference of cube, sum of squares and sum of arithmetic sequence formulas

$2^3-1^3+4^3-3^3+6^3-5^3+...+18^3-17^3$

$=(2-1)(2^2+1 \cdot 2+1^2)+(4-3)(4^2+4 \cdot 3+3^2)+(6-5)(6^2+6 \cdot 5+5^2)+...+(18-17)(18^2+18 \cdot 17+17^2)$

$=(2^2+1 \cdot 2+1^2)+(4^2+4 \cdot 3+3^2)+(6^2+6 \cdot 5+5^2)+...+(18^2+18 \cdot 17+17^2)$

$=1^2+2^2+3^2+4^2+5^2+6^2...+17^2+18^2+1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18$

$=\frac{18(18+1)(36+1)}{6}+1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18$

we could rewrite the second part as $(2n-1)(2n), (1 \leq n \leq 9)$(2n-1)(2n)=4n^2-2n

$4n^2=4(\frac{9(9+1)(18+1)}{6})$ $-2n=-2(\frac{9(9+1)}{2})$

Hence,

$1 \cdot 2+3 \cdot 4+5 \cdot 6+...+17 \cdot 18$ $=4(\frac{9(9+1)(18+1)}{6})-2(\frac{9(9+1)}{2})$

See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png