Difference between revisions of "2023 AMC 12A Problems/Problem 2"

(Solution 2)
Line 15: Line 15:
  
 
==Solution 2==
 
==Solution 2==
Let <math>p = </math> weight of a pizza
+
Let <math>p =</math> weight of a pizza.
     <math>o = </math> weight of a cup of orange
+
     <math>o =</math> weight of a cup of orange.
  
 
From the problem, we know that <math>o = \frac{1}{4}</math>.
 
From the problem, we know that <math>o = \frac{1}{4}</math>.
  
 
Write the equation below:
 
Write the equation below:
<math>\frac{1}{3} p + \frac{7}{2}\cdot\frac{1}{4} = \frac{3}{4} + \frac{1}{2}\cdot\frac{1}{4}</math>
+
<cmath>\frac{1}{3} p + \frac{7}{2}\cdot\frac{1}{4} = \frac{3}{4} p + \frac{1}{2}\cdot\frac{1}{4}</cmath>
  
 
Solving for <math>p</math>:
 
Solving for <math>p</math>:
 
<math>\frac{5}{12} p = \frac{3}{4}</math>
 
<math>\frac{5}{12} p = \frac{3}{4}</math>
  
<math>p = \frac{9}{5} = \boxed{\textbf{(A) }1\frac{4}{5}</math>.
+
<math>p = \frac{9}{5} = \boxed{\textbf{(A) }1\frac{4}{5}}.</math>
  
 
~d_code
 
~d_code

Revision as of 19:49, 9 November 2023

Problem

The weight of $\frac{1}{3}$ of a large pizza together with $3 \frac{1}{2}$ cups of orange slices is the same as the weight of $\frac{3}{4}$ of a large pizza together with $\frac{1}{2}$ cup of orange slices. A cup of orange slices weighs $\frac{1}{4}$ of a pound. What is the weight, in pounds, of a large pizza? $\textbf{(A) }1\frac{4}{5}\qquad\textbf{(B) }2\qquad\textbf{(C) }2\frac{2}{5}\qquad\textbf{(D) }3\qquad\textbf{(E) }3\frac{3}{5}$

Solution 1

Use a system of equations. Let $x$ be the weight of a pizza and $y$ be the weight of a cup of orange slices. We have \[\frac{1}{3}x+\frac{7}{2}y=\frac{3}{4}x+\frac{1}{2}y.\] Rearranging, we get \begin{align*} \frac{5}{12}x&=3y, \\ x&=\frac{36}{5}y. \end{align*} Plugging in $\frac{1}{4}$ pounds for $y$ gives $\frac{9}{5}=\boxed{\textbf{(A) }1\frac{4}{5}}.$

~ItsMeNoobieboy

Solution 2

Let $p =$ weight of a pizza.

   $o =$ weight of a cup of orange.

From the problem, we know that $o = \frac{1}{4}$.

Write the equation below: \[\frac{1}{3} p + \frac{7}{2}\cdot\frac{1}{4} = \frac{3}{4} p + \frac{1}{2}\cdot\frac{1}{4}\]

Solving for $p$: $\frac{5}{12} p = \frac{3}{4}$

$p = \frac{9}{5} = \boxed{\textbf{(A) }1\frac{4}{5}}.$

~d_code

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png