Difference between revisions of "2016 AMC 10A Problems/Problem 23"
Isabelchen (talk | contribs) m (→Solution 5) |
Isabelchen (talk | contribs) m (→Solution 5) |
||
Line 69: | Line 69: | ||
==Solution 5== | ==Solution 5== | ||
− | <math>2016 \diamondsuit (6 \diamondsuit x) = (2016 \diamondsuit 6)x = 100</math> | + | <math>2016 \diamondsuit (6 \diamondsuit x) = (2016 \diamondsuit 6) \cdot x = 100</math> |
− | <math>2016 \diamondsuit (2016 \diamondsuit 1) = (2016 \diamondsuit 2016) \ | + | <math>2016 \diamondsuit (2016 \diamondsuit 1) = (2016 \diamondsuit 2016) \cdot 1 = 1 \cdot 1 = 1</math> |
<math>2016 \diamondsuit 2016 = 1</math>, <math>2016 \diamondsuit (2016 \diamondsuit 1) = 1</math>, <math>2016 \diamondsuit 1 = 2016</math> | <math>2016 \diamondsuit 2016 = 1</math>, <math>2016 \diamondsuit (2016 \diamondsuit 1) = 1</math>, <math>2016 \diamondsuit 1 = 2016</math> | ||
− | <math>2016 \diamondsuit 1 = (2016 \diamondsuit 6) 6</math>, <math>2016 \diamondsuit 6 = 336</math> | + | <math>2016 \diamondsuit 1 = (2016 \diamondsuit 6) \cdot 6</math>, <math>2016 \diamondsuit 6 = \frac{2016 \diamondsuit 1}{6} = 336</math> |
<math>x = \frac{100}{2016 \diamondsuit 6} = \frac{100}{336} = \frac{25}{84}</math>, <math>24 + 85 = \boxed{\textbf{(A) }109}</math> | <math>x = \frac{100}{2016 \diamondsuit 6} = \frac{100}{336} = \frac{25}{84}</math>, <math>24 + 85 = \boxed{\textbf{(A) }109}</math> |
Revision as of 10:16, 13 January 2023
Contents
Problem
A binary operation has the properties that and that for all nonzero real numbers and . (Here represents multiplication). The solution to the equation can be written as , where and are relatively prime positive integers. What is
Solution 1
We see that , and think of division. Testing, we see that the first condition is satisfied, because . Therefore, division can be the operation . Solving the equation, so the answer is .
Solution 2 (Proving that is division)
If the given conditions hold for all nonzero numbers and ,
Let From the first two givens, this implies that
From this equation simply becomes
Let Substituting this into the first two conditions, we see that
Substituting , the second equation becomes
Since and are nonzero, we can divide by which yields,
Now we can find the value of straightforwardly:
Therefore,
-Benedict T (countmath1)
Note: We only really cared about what was, so we used the existence of to get an expression in terms of just and .
Solution 3
One way to eliminate the in this equation is to make so that . In this case, we can make .
By multiplying both sides by , we get:
Because
Therefore, , so the answer is
Solution 4
We can manipulate the given identities to arrive at a conclusion about the binary operator . Substituting into the first identity yields Hence, or, dividing both sides of the equation by
Hence, the given equation becomes . Solving yields so the answer is
Solution 5
, ,
,
,
Video Solution 1
https://www.youtube.com/watch?v=8GULAMwu5oE
Video Solution 2(Meta-Solving Technique)
https://youtu.be/GmUWIXXf_uk?t=1632
~ pi_is_3.14
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2016 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.