Difference between revisions of "2016 AMC 10A Problems/Problem 23"
Countmath1 (talk | contribs) (→Solution 2) |
Isabelchen (talk | contribs) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A) }109\qquad\textbf{(B) }201\qquad\textbf{(C) }301\qquad\textbf{(D) }3049\qquad\textbf{(E) }33,601</math> | <math>\textbf{(A) }109\qquad\textbf{(B) }201\qquad\textbf{(C) }301\qquad\textbf{(D) }3049\qquad\textbf{(E) }33,601</math> | ||
− | + | == Solution 1 == | |
− | |||
We see that <math>a \, \diamondsuit \, a = 1</math>, and think of division. Testing, we see that the first condition <math>a \, \diamondsuit \, (b \, \diamondsuit \, c) = (a \, \diamondsuit \, b) \cdot c</math> is satisfied, because <math>\frac{a}{\frac{b}{c}} = \frac{a}{b} \cdot c</math>. Therefore, division can be the operation <math>\diamondsuit</math>. Solving the equation, <cmath>\frac{2016}{\frac{6}{x}} = \frac{2016}{6} \cdot x = 336x = 100\implies x=\frac{100}{336} = \frac{25}{84},</cmath> so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109}</math>. | We see that <math>a \, \diamondsuit \, a = 1</math>, and think of division. Testing, we see that the first condition <math>a \, \diamondsuit \, (b \, \diamondsuit \, c) = (a \, \diamondsuit \, b) \cdot c</math> is satisfied, because <math>\frac{a}{\frac{b}{c}} = \frac{a}{b} \cdot c</math>. Therefore, division can be the operation <math>\diamondsuit</math>. Solving the equation, <cmath>\frac{2016}{\frac{6}{x}} = \frac{2016}{6} \cdot x = 336x = 100\implies x=\frac{100}{336} = \frac{25}{84},</cmath> so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109}</math>. | ||
Line 43: | Line 42: | ||
Note: We only really cared about what <math>a\diamondsuit\,{b}</math> was, so we used the existence of <math>c</math> to get an expression in terms of just <math>a</math> and <math>b</math>. | Note: We only really cared about what <math>a\diamondsuit\,{b}</math> was, so we used the existence of <math>c</math> to get an expression in terms of just <math>a</math> and <math>b</math>. | ||
− | + | == Solution 3 == | |
One way to eliminate the <math>\diamondsuit</math> in this equation is to make <math>a = b</math> so that <math>a\,\diamondsuit\, (b\,\diamondsuit \,c) = c</math>. In this case, we can make <math>b = 2016</math>. | One way to eliminate the <math>\diamondsuit</math> in this equation is to make <math>a = b</math> so that <math>a\,\diamondsuit\, (b\,\diamondsuit \,c) = c</math>. In this case, we can make <math>b = 2016</math>. | ||
Line 62: | Line 61: | ||
Therefore, <math>x = \frac{600}{2016} = \frac{25}{84}</math>, so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math> | Therefore, <math>x = \frac{600}{2016} = \frac{25}{84}</math>, so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math> | ||
− | + | ==Solution 4== | |
We can manipulate the given identities to arrive at a conclusion about the binary operator <math>\diamondsuit</math>. Substituting <math>b = c</math> into the first identity yields <cmath>( a\ \diamondsuit\ b) \cdot b = a\ \diamondsuit\ (b\ \diamondsuit\ b) = a\ \diamondsuit\ 1 = a\ \diamondsuit\ ( a\ \diamondsuit\ a) = ( a\ \diamondsuit\ a) \cdot a = a.</cmath> Hence, <math>( a\ \diamondsuit\ b) \cdot b = a,</math> or, dividing both sides of the equation by <math>b,</math> <math>( a\ \diamondsuit\ b) = \frac{a}{b}.</math> | We can manipulate the given identities to arrive at a conclusion about the binary operator <math>\diamondsuit</math>. Substituting <math>b = c</math> into the first identity yields <cmath>( a\ \diamondsuit\ b) \cdot b = a\ \diamondsuit\ (b\ \diamondsuit\ b) = a\ \diamondsuit\ 1 = a\ \diamondsuit\ ( a\ \diamondsuit\ a) = ( a\ \diamondsuit\ a) \cdot a = a.</cmath> Hence, <math>( a\ \diamondsuit\ b) \cdot b = a,</math> or, dividing both sides of the equation by <math>b,</math> <math>( a\ \diamondsuit\ b) = \frac{a}{b}.</math> | ||
Hence, the given equation becomes <math>\frac{2016}{\frac{6}{x}} = 100</math>. Solving yields <math>x=\frac{100}{336} = \frac{25}{84},</math> so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math> | Hence, the given equation becomes <math>\frac{2016}{\frac{6}{x}} = 100</math>. Solving yields <math>x=\frac{100}{336} = \frac{25}{84},</math> so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math> | ||
+ | |||
+ | ==Solution 5== | ||
+ | |||
+ | <math>2016 \diamondsuit (2016 \diamondsuit 1) = (2016 \diamondsuit 2016) \diamondsuit 1 = 1 \diamondsuit 1 = 1</math> | ||
+ | |||
+ | <math>2016 \diamondsuit (2016 \diamondsuit (2016 \diamondsuit 1)) = 2016 \diamondsuit 1</math> | ||
+ | |||
+ | <math>2016 \diamondsuit 1 </math> | ||
== Video Solution 1== | == Video Solution 1== |
Revision as of 09:45, 13 January 2023
Contents
Problem
A binary operation has the properties that and that for all nonzero real numbers and . (Here represents multiplication). The solution to the equation can be written as , where and are relatively prime positive integers. What is
Solution 1
We see that , and think of division. Testing, we see that the first condition is satisfied, because . Therefore, division can be the operation . Solving the equation, so the answer is .
Solution 2 (Proving that is division)
If the given conditions hold for all nonzero numbers and ,
Let From the first two givens, this implies that
From this equation simply becomes
Let Substituting this into the first two conditions, we see that
Substituting , the second equation becomes
Since and are nonzero, we can divide by which yields,
Now we can find the value of straightforwardly:
Therefore,
-Benedict T (countmath1)
Note: We only really cared about what was, so we used the existence of to get an expression in terms of just and .
Solution 3
One way to eliminate the in this equation is to make so that . In this case, we can make .
By multiplying both sides by , we get:
Because
Therefore, , so the answer is
Solution 4
We can manipulate the given identities to arrive at a conclusion about the binary operator . Substituting into the first identity yields Hence, or, dividing both sides of the equation by
Hence, the given equation becomes . Solving yields so the answer is
Solution 5
Video Solution 1
https://www.youtube.com/watch?v=8GULAMwu5oE
Video Solution 2(Meta-Solving Technique)
https://youtu.be/GmUWIXXf_uk?t=1632
~ pi_is_3.14
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2016 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.