Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 14"

(New page: ==Problem== {{empty}} ==Solution== {{solution}} ==See also== {{CYMO box|year=2006|l=Lyceum|num-b=13|num-a=15}})
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
{{empty}}
+
<div style="float:right">
 +
[[Image:2006 CyMO-14.PNG|250px]]
 +
</div>
 +
 
 +
The rectangle <math>ABCD</math> is a small garden divided to the rectangle <math>AXED</math> and to the square <math>ZBCE</math>, so that <math>AE=2\sqrt{5}m</math> and the shaded area of the triangle <math>DBE</math> is <math>4m^2</math>. The area of the whole garden is
 +
 
 +
A. <math>24m^2</math>
 +
 
 +
B. <math>20m^2</math>
 +
 
 +
C. <math>16m^2</math>
 +
 
 +
D. <math>32m^2</math>
 +
 
 +
E. <math>10\sqrt5m^2</math>
  
 
==Solution==
 
==Solution==

Revision as of 20:58, 17 October 2007

Problem

2006 CyMO-14.PNG

The rectangle $ABCD$ is a small garden divided to the rectangle $AXED$ and to the square $ZBCE$, so that $AE=2\sqrt{5}m$ and the shaded area of the triangle $DBE$ is $4m^2$. The area of the whole garden is

A. $24m^2$

B. $20m^2$

C. $16m^2$

D. $32m^2$

E. $10\sqrt5m^2$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30