Difference between revisions of "2022 AMC 10A Problems/Problem 1"
Lopkiloinm (talk | contribs) (→Solution 2) |
Lopkiloinm (talk | contribs) (→Solution 2) |
||
Line 29: | Line 29: | ||
\dfrac{[q_0,q_1,q_2,\ldots,q_n]}{[q_1,q_2,\ldots,q_n]}&=\dfrac{[3,3,3,3]}{[3,3,3]}\\ | \dfrac{[q_0,q_1,q_2,\ldots,q_n]}{[q_1,q_2,\ldots,q_n]}&=\dfrac{[3,3,3,3]}{[3,3,3]}\\ | ||
&=\boxed{\textbf{(D)}\ \frac{109}{33}} | &=\boxed{\textbf{(D)}\ \frac{109}{33}} | ||
− | \end{align*}</cmath> | + | \end{align*}</cmath>~lopkiloinm |
==Video Solution 1 (Quick and Easy)== | ==Video Solution 1 (Quick and Easy)== |
Revision as of 00:07, 17 November 2022
- The following problem is from both the 2022 AMC 10A #1 and 2022 AMC 12A #1, so both problems redirect to this page.
Problem
What is the value of
Solution
We have ~MRENTHUSIASM
Solution 2
Continued fractions are expressed as where ~lopkiloinm
Video Solution 1 (Quick and Easy)
~Education, the Study of Everything
See Also
2022 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.