Difference between revisions of "2022 AMC 10A Problems/Problem 4"

(Solution)
(Solution 2)
Line 20: Line 20:
  
 
<cmath>100\cdot\frac{m}{(\frac{x}{l})} = \frac{100lm}{x} \rightarrow \boxed{\textbf{(E) } \frac{100lm}{x}}.</cmath>
 
<cmath>100\cdot\frac{m}{(\frac{x}{l})} = \frac{100lm}{x} \rightarrow \boxed{\textbf{(E) } \frac{100lm}{x}}.</cmath>
 +
 +
-Benedict T (countmath1)
  
 
==Video Solution 1 (Quick and Easy)==
 
==Video Solution 1 (Quick and Easy)==

Revision as of 22:55, 13 November 2022

Problem

In some countries, automobile fuel efficiency is measured in liters per $100$ kilometers while other countries use miles per gallon. Suppose that 1 kilometer equals $m$ miles, and $1$ gallon equals $l$ liters. Which of the following gives the fuel efficiency in liters per $100$ kilometers for a car that gets $x$ miles per gallon?

$\textbf{(A) } \frac{x}{100lm} \qquad \textbf{(B) } \frac{xlm}{100} \qquad \textbf{(C) } \frac{lm}{100x} \qquad \textbf{(D) } \frac{100}{xlm} \qquad \textbf{(E) } \frac{100lm}{x}$

Solution 1

The formula for fuel efficiency is \[\frac{\text{Distance}}{\text{Gas Consumption}}.\] Note that $1$ mile equals $\frac 1m$ kilometers. We have \[\frac{x\text{ miles}}{1\text{ gallon}} = \frac{\frac{x}{m}\text{ kilometers}}{l\text{ liters}} = \frac{1\text{ kilometer}}{\frac{lm}{x}\text{ liters}} = \frac{100\text{ kilometers}}{\frac{100lm}{x}\text{ liters}}.\] Therefore, the answer is $\boxed{\textbf{(E) } \frac{100lm}{x}}.$

~MRENTHUSIASM

Solution 2

Since it can be a bit odd to think of "liters per 100 km", this statement's numerical value is equivalent to $100\cdot\text{km per 1 liter}$.

$1\text{km}=l\text{ liters},$ so the numerator is simply $l$. Since $l$ liters $=$ $1$ gallon, and $x$ miles = $1$ gallon, $1 liter = \frac{x}{l}$.

Therefore, the requested expression is

\[100\cdot\frac{m}{(\frac{x}{l})} = \frac{100lm}{x} \rightarrow \boxed{\textbf{(E) } \frac{100lm}{x}}.\]

-Benedict T (countmath1)

Video Solution 1 (Quick and Easy)

https://youtu.be/JX4u3V2IqY0

~Education, the Study of Everything

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png