Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 21"

(Problem)
(solution)
Line 1: Line 1:
 
==Problem==
 
==Problem==
{{empty}}
+
A convex polygon has <math>n</math> sides and <math>740</math> diagonals. Then <math>n</math> equals
 +
 
 +
A. <math>30</math>
 +
 
 +
B. <math>40</math>
 +
 
 +
C. <math>50</math>
 +
 
 +
D. <math>60</math>
 +
 
 +
E. None of these
  
 
==Solution==
 
==Solution==
{{solution}}
+
The number of diagonals is <math>\frac{n(n-3)}{2} = 740 \Longrightarrow n(n-3) = 1480</math>. By either solving the [[quadratic equation]] or by substituting the answer choices, we get <math>n = 40 \Longrightarrow \mathrm{B}</math>.
  
 
==See also==
 
==See also==
 
{{CYMO box|year=2006|l=Lyceum|num-b=21|num-a=22}}
 
{{CYMO box|year=2006|l=Lyceum|num-b=21|num-a=22}}
 +
 +
[[Category:Introductory Combinatorics Problems]]

Revision as of 16:53, 15 October 2007

Problem

A convex polygon has $n$ sides and $740$ diagonals. Then $n$ equals

A. $30$

B. $40$

C. $50$

D. $60$

E. None of these

Solution

The number of diagonals is $\frac{n(n-3)}{2} = 740 \Longrightarrow n(n-3) = 1480$. By either solving the quadratic equation or by substituting the answer choices, we get $n = 40 \Longrightarrow \mathrm{B}$.

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 21
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30