Difference between revisions of "2022 AMC 12A Problems/Problem 18"

(Created page with "==Problem== Let <math>T_k</math> be the transformation of the coordinate plane that first rotates the plane <math>k</math> degrees counter-clockwise around the origin and the...")
 
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
 +
Let <math>A_{n}</math> be the point <math>(\cos n^{\circ}, \sin n^{\circ})</math>.
 +
 +
Starting with <math>n=0</math>, the sequence goes <cmath>A_{0}\rightarrow A_{179}\rightarrow A_{359}\rightarrow A_{178}\rightarrow A_{358}\rightarrow A_{177}\rightarrow A_{357}\rightarrow\cdots</cmath>
 +
 +
We see that it takes <math>2</math> turns to downgrade the point by <math>1^{\circ}</math>. Since the fifth point in the sequence is <math>A_{177}</math>, the answer is <math>5+2(177)=\boxed{\textbf{(A)}~359}</math>
 +
 +
==Video Solution by Professor Chen Education Palace==
  
 
https://youtu.be/QQrsKTErJn8
 
https://youtu.be/QQrsKTErJn8
  
(Professor Chen Education Palace, www.professorchenedu.com)
+
==See also==
 +
{{AMC12 box|year=2022|ab=A|num-b=17|num-a=19}}
 +
{{AMC10 box|year=2022|ab=A|num-b=17|num-a=19}}
 +
{{MAA Notice}}

Revision as of 20:11, 11 November 2022

Problem

Let $T_k$ be the transformation of the coordinate plane that first rotates the plane $k$ degrees counter-clockwise around the origin and then reflects the plane across the $y$-axis. What is the least positive integer $n$ such that performing the sequence of transformations $T_1, T_2, T_3, \cdots, T_n$ returns the point $(1,0)$ back to itself?

Solution

Let $A_{n}$ be the point $(\cos n^{\circ}, \sin n^{\circ})$.

Starting with $n=0$, the sequence goes \[A_{0}\rightarrow A_{179}\rightarrow A_{359}\rightarrow A_{178}\rightarrow A_{358}\rightarrow A_{177}\rightarrow A_{357}\rightarrow\cdots\]

We see that it takes $2$ turns to downgrade the point by $1^{\circ}$. Since the fifth point in the sequence is $A_{177}$, the answer is $5+2(177)=\boxed{\textbf{(A)}~359}$

Video Solution by Professor Chen Education Palace

https://youtu.be/QQrsKTErJn8

See also

2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png