Difference between revisions of "2006 AMC 12A Problems/Problem 17"
(→Problem) |
(→Solutions) |
||
Line 47: | Line 47: | ||
Therefore, <math>\frac{\frac{5}{3}}{3}=\frac{5}{9}=\boxed{B}</math> | Therefore, <math>\frac{\frac{5}{3}}{3}=\frac{5}{9}=\boxed{B}</math> | ||
+ | |||
+ | ===Solution 4 - Alcumus=== | ||
+ | |||
+ | Let <math>B=(0,0)</math>, <math>C=(s,0)</math>, <math>A=(0,s)</math>, <math>D=(s,s)</math>, and <math>E=\left(s+\frac{r}{\sqrt{2}},s+\frac{r}{\sqrt{2}} \right)</math>. Apply the Pythagorean Theorem to <math>\triangle AFE</math> to obtain\[ | ||
+ | r^2+\left(9+5\sqrt{2}\right)=\left(s+\frac{r}{\sqrt{2}}\right)^2+\left(\frac{r}{\sqrt{2}}\right)^2, | ||
+ | \]from which <math>9+5\sqrt{2}=s^2+rs\sqrt{2}</math>. Because <math>r</math> and <math>s</math> are rational, it follows that <math>s^2=9</math> and <math>rs=5</math>, so <math>r/s = \boxed{5/9}</math>. | ||
+ | |||
+ | OR | ||
+ | |||
+ | Extend <math>\overline{AD}</math> past <math>D</math> to meet the circle at <math>G \ne D</math>. Because <math>E</math> is collinear with <math>B</math> and <math>D</math>, <math>\angle EDG = 45^\circ.</math> Also, <math>ED = EG,</math> which implies <math>\angle EGD = 45^\circ</math>, so <math>\triangle EDG</math> is an isosceles right triangle. Thus <math>DG = r\sqrt{2}</math>. By the Power of a Point Theorem,\begin{align*} | ||
+ | 9+5\sqrt{2} &= AF^2 \\ | ||
+ | &= AD\cdot AG\\ | ||
+ | & = AD\cdot \left(AD+DG\right) \\ | ||
+ | &= | ||
+ | s\left(s+r\sqrt{2}\right) \\ | ||
+ | &= s^2+rs\sqrt{2}.\end{align*}As in the first solution, we conclude that <math>r/s=\boxed{5/9}</math>. | ||
== See Also == | == See Also == |
Revision as of 15:08, 19 July 2022
Contents
Problem
Square has side length
, a circle centered at
has radius
, and
and
are both rational. The circle passes through
, and
lies on
. Point
lies on the circle, on the same side of
as
. Segment
is tangent to the circle, and
. What is
?
![AMC12 2006A 17.png](https://wiki-images.artofproblemsolving.com//e/e2/AMC12_2006A_17.png)
Solutions
Solution 1
One possibility is to use the coordinate plane, setting at the origin. Point
will be
and
will be
since
, and
are collinear and contain a diagonal of
. The Pythagorean theorem results in
This implies that and
; dividing gives us
.
Solution 2
First note that angle is right since
is tangent to the circle. Using the Pythagorean Theorem on
, then, we see
But it can also be seen that . Therefore, since
lies on
,
. Using the Law of Cosines on
, we see
Thus, since and
are rational,
and
. So
,
, and
.
Solution 3
(Similar to Solution 1)
First, draw line AE and mark a point Z that is equidistant from E and D so that and that line
includes point D. Since DE is equal to the radius
,
Note that triangles and
share the same hypotenuse
, meaning that
Plugging in our values we have:
By logic
and
Therefore,
Solution 4 - Alcumus
Let ,
,
,
, and
. Apply the Pythagorean Theorem to
to obtain\[
r^2+\left(9+5\sqrt{2}\right)=\left(s+\frac{r}{\sqrt{2}}\right)^2+\left(\frac{r}{\sqrt{2}}\right)^2,
\]from which
. Because
and
are rational, it follows that
and
, so
.
OR
Extend past
to meet the circle at
. Because
is collinear with
and
,
Also,
which implies
, so
is an isosceles right triangle. Thus
. By the Power of a Point Theorem,\begin{align*}
9+5\sqrt{2} &= AF^2 \\
&= AD\cdot AG\\
& = AD\cdot \left(AD+DG\right) \\
&=
s\left(s+r\sqrt{2}\right) \\
&= s^2+rs\sqrt{2}.\end{align*}As in the first solution, we conclude that
.
See Also
2006 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.