Difference between revisions of "2022 AIME II Problems/Problem 15"
(→See Also) |
|||
Line 34: | Line 34: | ||
==Solution== | ==Solution== | ||
+ | First observe that <math>AO_2 = O_2D</math> and <math>BO_1 = O_1C</math>. Let points <math>A'</math> and <math>B'</math> be the reflections of <math>A</math> and <math>B</math>, respectively, about the perpendicular bisector of <math>\overline{O_1O_2}</math>. Then quadrilaterals <math>ABO_1O_2</math> and <math>A'B'O_2O_1</math> are congruent, so hexagons <math>ABO_1CDO_2</math> and <math>B'A'O_1CDO_2</math> have the same area. Furthermore, triangles <math>DO_2B'</math> and <math>A'O_1C</math> are congruent, so <math>B'D = A'C</math> and quadrilateral <math>B'A'CD</math> is an isosceles trapezoid. | ||
+ | <asy> | ||
+ | import olympiad; | ||
+ | size(180); | ||
+ | defaultpen(linewidth(0.7)); | ||
+ | pair Bp = dir(105), Ap = dir(75), O1 = dir(25), C = dir(320), D = dir(220), O2 = dir(175); | ||
+ | draw(unitcircle^^Bp--Ap--O1--C--D--O2--cycle); | ||
+ | label("$B'$",Bp,dir(origin--Bp)); | ||
+ | label("$A'$",Ap,dir(origin--Ap)); | ||
+ | label("$O_1$",O1,dir(origin--O1)); | ||
+ | label("$C$",C,dir(origin--C)); | ||
+ | label("$D$",D,dir(origin--D)); | ||
+ | label("$O_2$",O2,dir(origin--O2)); | ||
+ | draw(O2--O1,linetype("4 4")); | ||
+ | draw(Bp--D^^Ap--C,linetype("2 2")); | ||
+ | </asy> | ||
+ | Next, remark that <math>A'O_1 = DO_2</math>, so quadrilateral <math>A'O_1DO_2</math> is also an isosceles trapezoid; in turn, <math>A'D = O_1O_2 = 15</math>, and similarly <math>B'C = 15</math>. Thus, Ptolmey's theorem on <math>B'A'CD</math> yields <math>B'D\cdot A'C + 2\cdot 16 = 15^2</math>, whence <math>B'D = A'C = \sqrt{193}</math>. Let <math>\alpha = \angle B'A'D</math>. The Law of Cosines on triangle <math>B'A'D</math> yields | ||
+ | <cmath>\cos\alpha = \frac{15^2 + 2^2 - (\sqrt{193})^2}{2\cdot 2\cdot 15} = \frac{36}{60} = \frac 35,</cmath> and hence <math>\sin\alpha = \tfrac 45</math>. Thus the distance between bases <math>AB</math> and <math>CD</math> is <math>12</math> (in fact, <math>\triangle B'A'D</math> is a <math>9-12-15</math> triangle with a <math>7-12-\sqrt{193}</math> triangle removed), which implies the area of <math>B'A'CD</math> is <math>\tfrac12\cdot 12\cdot(2+16) = 108</math>. | ||
+ | |||
+ | Now let <math>O_1C = O_2B' = r_1</math> and <math>O_2D = O_1A' = r_2</math>; the tangency of circles <math>\omega_1</math> and <math>\omega_2</math> implies <math>r_1 + r_2 = 15</math>. Furthermore, angles <math>B'O_2D</math> and <math>B'A'D</math> are opposite angles in cyclic quadrilateral <math>A'B'O_2D</math>, which implies the measure of angle <math>B'O_2D</math> is <math>180^\circ - \alpha</math>. Therefore, the Law of Cosines applied to triangle <math>\triangle B'O_2D</math> yields | ||
+ | <cmath>\begin{align*} | ||
+ | 193 &= r_1^2 + r_2^2 - 2r_1r_2(-\tfrac 35) = (r_1^2 + 2r_1r_2 + r_2^2) - \tfrac45r_1r_2\\ | ||
+ | &= (r_1+r_2)^2 - \tfrac45 r_1r_2 = 225 - \tfrac45r_1r_2. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Thus <math>r_1r_2 = 40</math>, and so the area of triangle <math>B'O_2D</math> is <math>\tfrac12r_1r_2\sin\alpha = 16</math>. | ||
+ | |||
+ | Thus, the area of hexagon <math>ABO_{1}CDO_{2}</math> is <math>108 + 2\cdot 16 = \boxed{140}</math>. | ||
+ | |||
+ | ~djmathman | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2022|n=II|num-b=14|after=Last Problem}} | {{AIME box|year=2022|n=II|num-b=14|after=Last Problem}} | ||
+ | |||
+ | [[Category:Intermediate Geometry Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 13:34, 18 February 2022
Problem
Two externally tangent circles and have centers and , respectively. A third circle passing through and intersects at and and at and , as shown. Suppose that , , , and is a convex hexagon. Find the area of this hexagon.
Solution
First observe that and . Let points and be the reflections of and , respectively, about the perpendicular bisector of . Then quadrilaterals and are congruent, so hexagons and have the same area. Furthermore, triangles and are congruent, so and quadrilateral is an isosceles trapezoid. Next, remark that , so quadrilateral is also an isosceles trapezoid; in turn, , and similarly . Thus, Ptolmey's theorem on yields , whence . Let . The Law of Cosines on triangle yields and hence . Thus the distance between bases and is (in fact, is a triangle with a triangle removed), which implies the area of is .
Now let and ; the tangency of circles and implies . Furthermore, angles and are opposite angles in cyclic quadrilateral , which implies the measure of angle is . Therefore, the Law of Cosines applied to triangle yields
Thus , and so the area of triangle is .
Thus, the area of hexagon is .
~djmathman
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.