Difference between revisions of "2022 AIME II Problems/Problem 12"
Mathfun1000 (talk | contribs) m (Blanked the page) (Tag: Blanking) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | Let <math>a, b, x,</math> and <math>y</math> be real numbers with <math>a>4</math> and <math>b>1</math> such that<cmath>\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=\frac{(x-20)^2}{b^2-1}+\frac{(y-11)^2}{b^2}=1.</cmath>Find the least possible value of <math>a+b.</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | ==See Also== | ||
+ | {{AIME box|year=2022|n=II|num-b=11|num-a=13}} | ||
+ | {{MAA Notice}} |
Revision as of 07:27, 18 February 2022
Problem
Let and be real numbers with and such thatFind the least possible value of
Solution
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.