Difference between revisions of "1994 AIME Problems/Problem 2"
m (add solution) |
I_like_pie (talk | contribs) (Added Image) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
A circle with diameter <math>\overline{PQ}\,</math> of length 10 is internally tangent at <math>P^{}_{}</math> to a circle of radius 20. Square <math>ABCD\,</math> is constructed with <math>A\,</math> and <math>B\,</math> on the larger circle, <math>\overline{CD}\,</math> tangent at <math>Q\,</math> to the smaller circle, and the smaller circle outside <math>ABCD\,</math>. The length of <math>\overline{AB}\,</math> can be written in the form <math>m + \sqrt{n}\,</math>, where <math>m\,</math> and <math>n\,</math> are integers. Find <math>m + n\,</math>. | A circle with diameter <math>\overline{PQ}\,</math> of length 10 is internally tangent at <math>P^{}_{}</math> to a circle of radius 20. Square <math>ABCD\,</math> is constructed with <math>A\,</math> and <math>B\,</math> on the larger circle, <math>\overline{CD}\,</math> tangent at <math>Q\,</math> to the smaller circle, and the smaller circle outside <math>ABCD\,</math>. The length of <math>\overline{AB}\,</math> can be written in the form <math>m + \sqrt{n}\,</math>, where <math>m\,</math> and <math>n\,</math> are integers. Find <math>m + n\,</math>. | ||
+ | |||
+ | [[Image:1994 AIME Problem 2.png]] | ||
== Solution == | == Solution == | ||
− | |||
− | |||
Call the center of the larger circle <math>O</math>. Extend the diameter <math>\overline{PQ}</math> to the other side of the square (at point <math>E</math>), and draw <math>\overline{AO}</math>. We now have a [[right triangle]], with [[hypotenuse]] of length <math>20</math>. Since <math>\displaystyle OQ = OP - PQ = 20 - 10 = 10</math>, we know that <math>OE = AB - OQ = AB - 10</math>. The other leg, <math>AE</math>, is just <math>\frac 12 AB</math>. | Call the center of the larger circle <math>O</math>. Extend the diameter <math>\overline{PQ}</math> to the other side of the square (at point <math>E</math>), and draw <math>\overline{AO}</math>. We now have a [[right triangle]], with [[hypotenuse]] of length <math>20</math>. Since <math>\displaystyle OQ = OP - PQ = 20 - 10 = 10</math>, we know that <math>OE = AB - OQ = AB - 10</math>. The other leg, <math>AE</math>, is just <math>\frac 12 AB</math>. | ||
Revision as of 17:16, 15 September 2007
Problem
A circle with diameter of length 10 is internally tangent at to a circle of radius 20. Square is constructed with and on the larger circle, tangent at to the smaller circle, and the smaller circle outside . The length of can be written in the form , where and are integers. Find .
Solution
Call the center of the larger circle . Extend the diameter to the other side of the square (at point ), and draw . We now have a right triangle, with hypotenuse of length . Since , we know that . The other leg, , is just .
Apply the Pythagorean Theorem:
The quadratic formula shows that the answer is . Discard the negative root, so our answer is .
See also
1994 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |