1994 AIME Problems/Problem 13
Problem
The equation
has 10 complex roots where the bar denotes complex conjugation. Find the value of
Solution 1
Let . After multiplying the equation by , .
Using DeMoivre, where is an integer between and .
.
Since , after expanding. Here ranges from 0 to 4 because two angles which sum to are involved in the product.
The expression to find is .
But so the sum is .
Solution 2
Divide both sides by to get
Rearranging:
Thus, where where is an integer.
We see that . Thus,
Summing over all terms:
However, note that from drawing the numbers on the complex plane, our answer is just
Video Solution
See also
1994 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.