Difference between revisions of "2021 AMC 12B Problems/Problem 18"

(add solution)
(Solution 1)
Line 11: Line 11:
 
<cmath>\left((z^2+2z\bar{z}+\bar{z}^2)+4(z+\bar{z})+4\right)+\left(z^2\bar{z}^2-12z\bar{z}+36\right)=0</cmath>
 
<cmath>\left((z^2+2z\bar{z}+\bar{z}^2)+4(z+\bar{z})+4\right)+\left(z^2\bar{z}^2-12z\bar{z}+36\right)=0</cmath>
 
<cmath>(z+\bar{z}+2)^2+(z\bar{z}-6)^2=0.</cmath>
 
<cmath>(z+\bar{z}+2)^2+(z\bar{z}-6)^2=0.</cmath>
As the two quantities in the parentheses are real, <math>z+\bar{z}=\boxed{\textbf{(A) }-2}</math>.
+
As the two quantities in the parentheses are real, both quantities must equal <math>0</math> so <cmath>z+\frac6z=z+\bar{z}=\boxed{\textbf{(A) }-2}.</cmath>
 
 
  
 
==Solution 2==
 
==Solution 2==

Revision as of 14:36, 12 February 2021

Problem

Let $z$ be a complex number satisfying $12|z|^2=2|z+2|^2+|z^2+1|^2+31.$ What is the value of $z+\frac 6z?$

$\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4$

Solution 1

Using the fact $z\bar{z}=|z|^2$, the equation rewrites itself as

\[12z\bar{z}=2(z+2)(\bar{z}+2)+(z^2+1)(\bar{z}^2+1)+31\] \[-12z\bar{z}+2z\bar{z}+4(z+\bar{z})+8+z^2\bar{z}^2+(z^2+\bar{z}^2)+32=0\] \[\left((z^2+2z\bar{z}+\bar{z}^2)+4(z+\bar{z})+4\right)+\left(z^2\bar{z}^2-12z\bar{z}+36\right)=0\] \[(z+\bar{z}+2)^2+(z\bar{z}-6)^2=0.\] As the two quantities in the parentheses are real, both quantities must equal $0$ so \[z+\frac6z=z+\bar{z}=\boxed{\textbf{(A) }-2}.\]

Solution 2

The answer being in the form $z+\frac 6z$ means that there are two solutions, some complex number and its complex conjugate. \[a+bi = \frac{6}{a-bi}\] \[a^2+b^2=6\] We should then be able to test out some ordered pairs of $(a, b)$. After testing it out, we get the ordered pairs of $(-1, \sqrt{5})$ and its conjugate $(-1, -\sqrt{5})$. Plugging this into answer format gives us $\boxed{\textbf{(A) }-2}$ ~Lopkiloinm

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png