2021 AMC 12B Problems/Problem 1
- The following problem is from both the 2021 AMC 10B #1 and 2021 AMC 12B #1, so both problems redirect to this page.
Contents
- 1 Problem
- 2 Solution 1
- 3 Solution 2
- 4 Solution 3
- 5 Solution 4
- 6 Solution 5
- 7 Video Solution by savannahsolver
- 8 Video Solution by Punxsutawney Phil
- 9 Video Solution by OmegaLearn (Basic Computation)
- 10 Video Solution by Hawk Math
- 11 Video Solution by TheBeautyofMath
- 12 Video Solution by Interstigation
- 13 Video Solution (Just 1 min!)
- 14 See Also
Problem
How many integer values of satisfy
?
Solution 1
Since , we multiply
by
for the integers from
to
and the integers from
to
and add
to account for
to get
.
~smarty101 and edited by Tony_Li2007 and sl_hc
Solution 2
. Since
is approximately
,
is approximately
. We are trying to solve for
, where
. Hence,
, for
. The number of integer values of
is
. Therefore, the answer is
.
~ {TSun} ~
Solution 3
There are two cases here.
When and
So then
When and
So then
. Dividing by
and flipping the sign, we get
From case 1 and 2, we know that . Since
is an integer, we must have
between
and
. There are a total of
~PureSwag
Solution 4
Looking at the problem, we see that instead of directly saying , we see that it is
That means all the possible values of
in this case are positive and negative. Rounding
to
we get
There are
positive solutions and
negative solutions:
But what about zero? Even though zero is neither negative nor positive, but we still need to add it into the solution. Hence, the answer is
~DuoDuoling0
Solution 5
There are an odd number of integer solutions to this inequality since if any non-zero integer
satisfies this inequality, then so does
and we must also account for
which gives us the desired. Then, the answer is either
or
and since
the answer is at least
yielding
Video Solution by savannahsolver
~savannahsolver
Video Solution by Punxsutawney Phil
https://youtube.com/watch?v=qpvS2PVkI8A
Video Solution by OmegaLearn (Basic Computation)
Video Solution by Hawk Math
https://www.youtube.com/watch?v=VzwxbsuSQ80
Video Solution by TheBeautyofMath
~IceMatrix
Video Solution by Interstigation
~Interstigation
Video Solution (Just 1 min!)
~Education, the Study of Everything
See Also
2021 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2021 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.