Difference between revisions of "2006 AMC 12A Problems/Problem 6"

m (minor edit)
(Solutions)
Line 56: Line 56:
  
 
~coolmath2017
 
~coolmath2017
 +
 +
=== Solution 1  (but faster)===
 +
Since the two [[hexagon]]s are going to be repositioned to form a [[square (geometry) | square]] without overlap, We know that the bottom left side of the hexagon must be equal to y.
 +
 +
<asy>
 +
size(175);
 +
pair A,B,C,D,E,F,G,H;
 +
A=(0,8);
 +
B=(12,12);
 +
C=(12,4);
 +
D=(0,0);
 +
E=(0,12);
 +
F=(12,0);
 +
G=(6,4);
 +
H=(6,8);
 +
draw(A--E--B--C--G--H--A--D--F--C);
 +
label("$A$",A,W); label("$B$",B,NE); label("$C$",(12.6,4)); label("$D$",D,SW);
 +
label("$12$",E--B,N); label("$12$",D--F,S);
 +
label("$4$",E--A,W); label("$4$",(12.4,-1.75),E);
 +
label("$8$",A--D,W); label("$8$",(12.4,4),E);
 +
label("$y$",A--H,S); label("$y$",G--C,N);
 +
</asy>
 +
 +
As you can see from the diagram, the length y fits into the previously blank side, so we know that it is equal to y. From there we can say <math>{3y} {=} {18}</math> so <math>y</math> = \frac{12}{2} = 6 \Longrightarrow \mathrm{(A)}$.
  
 
== See also ==
 
== See also ==

Revision as of 19:52, 26 January 2021

The following problem is from both the 2006 AMC 12A #6 and 2006 AMC 10A #7, so both problems redirect to this page.

Problem

The $8\times18$ rectangle $ABCD$ is cut into two congruent hexagons, as shown, in such a way that the two hexagons can be repositioned without overlap to form a square. What is $y$?

[asy] unitsize(3mm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=4; draw((0,4)--(18,4)--(18,-4)--(0,-4)--cycle); draw((6,4)--(6,0)--(12,0)--(12,-4)); label("$A$",(0,4),NW); label("$B$",(18,4),NE); label("$C$",(18,-4),SE); label("$D$",(0,-4),SW); label("$y$",(3,4),S); label("$y$",(15,-4),N); label("$18$",(9,4),N); label("$18$",(9,-4),S); label("$8$",(0,0),W); label("$8$",(18,0),E); dot((0,4)); dot((18,4)); dot((18,-4)); dot((0,-4));[/asy]

$\mathrm{(A)}\ 6\qquad\mathrm{(B)}\ 7\qquad\mathrm{(C)}\ 8\qquad\mathrm{(D)}\ 9\qquad\mathrm{(E)}\ 10$

Solutions

Solution 1

Since the two hexagons are going to be repositioned to form a square without overlap, the area will remain the same. The rectangle's area is $18\cdot8=144$. This means the square will have four sides of length 12. The only way to do this is shown below.

[asy] size(175); pair A,B,C,D,E,F,G,H; A=(0,8); B=(12,12); C=(12,4); D=(0,0); E=(0,12); F=(12,0); G=(6,4); H=(6,8); draw(A--E--B--C--G--H--A--D--F--C); label("$A$",A,W); label("$B$",B,NE); label("$C$",(12.6,4)); label("$D$",D,SW); label("$12$",E--B,N); label("$12$",D--F,S);  label("$4$",E--A,W); label("$4$",(12.4,-1.75),E); label("$8$",A--D,W); label("$8$",(12.4,4),E); label("$y$",A--H,S); label("$y$",G--C,N); [/asy]

As you can see from the diagram, the line segment denoted as $y$ is half the length of the side of the square, which leads to $y = \frac{12}{2} = 6 \Longrightarrow \mathrm{(A)}$.

Solution 2 (Cheap)

Because the two hexagons are congruent, we know that the perpendicular line to A is half of BC, or $4$. Next, we plug the answer choices in to see which one works. Trying $A$, we get the area of one hexagon is $72$ , as desired, so the answer is $A$ .

~coolmath2017

Solution 1 (but faster)

Since the two hexagons are going to be repositioned to form a square without overlap, We know that the bottom left side of the hexagon must be equal to y.

[asy] size(175); pair A,B,C,D,E,F,G,H; A=(0,8); B=(12,12); C=(12,4); D=(0,0); E=(0,12); F=(12,0); G=(6,4); H=(6,8); draw(A--E--B--C--G--H--A--D--F--C); label("$A$",A,W); label("$B$",B,NE); label("$C$",(12.6,4)); label("$D$",D,SW); label("$12$",E--B,N); label("$12$",D--F,S);  label("$4$",E--A,W); label("$4$",(12.4,-1.75),E); label("$8$",A--D,W); label("$8$",(12.4,4),E); label("$y$",A--H,S); label("$y$",G--C,N); [/asy]

As you can see from the diagram, the length y fits into the previously blank side, so we know that it is equal to y. From there we can say ${3y} {=} {18}$ so $y$ = \frac{12}{2} = 6 \Longrightarrow \mathrm{(A)}$.

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png