Difference between revisions of "1994 AIME Problems/Problem 9"
m |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | A solitarire game is played as follows. Six distinct pairs of matched tiles are placed in a bag. The player randomly draws tiles one at a time from the bag and retains them, except that matching tiles are put aside as soon as they appear in the player's hand. The game ends if the player ever holds three tiles, no two of which match; otherwise the drawing continues until the bag is empty. The probability that the bag will be emptied is <math>p/q,\,</math> where <math>p\,</math> and <math>q\,</math> are relatively prime positive integers. Find <math>p+q.\,</math> | ||
== Solution == | == Solution == | ||
+ | {{solution}} | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=1994|num-b=8|num-a=10}} |
Revision as of 22:35, 28 March 2007
Problem
A solitarire game is played as follows. Six distinct pairs of matched tiles are placed in a bag. The player randomly draws tiles one at a time from the bag and retains them, except that matching tiles are put aside as soon as they appear in the player's hand. The game ends if the player ever holds three tiles, no two of which match; otherwise the drawing continues until the bag is empty. The probability that the bag will be emptied is where and are relatively prime positive integers. Find
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
1994 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |