Difference between revisions of "1994 AIME Problems/Problem 9"

 
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
A solitarire game is played as follows.  Six distinct pairs of matched tiles are placed in a bag.  The player randomly draws tiles one at a time from the bag and retains them, except that matching tiles are put aside as soon as they appear in the player's hand.  The game ends if the player ever holds three tiles, no two of which match; otherwise the drawing continues until the bag is empty.  The probability that the bag will be emptied is <math>p/q,\,</math> where <math>p\,</math> and <math>q\,</math> are relatively prime positive integers.  Find <math>p+q.\,</math>
  
 
== Solution ==
 
== Solution ==
 +
{{solution}}
  
 
== See also ==
 
== See also ==
* [[1994 AIME Problems]]
+
{{AIME box|year=1994|num-b=8|num-a=10}}

Revision as of 22:35, 28 March 2007

Problem

A solitarire game is played as follows. Six distinct pairs of matched tiles are placed in a bag. The player randomly draws tiles one at a time from the bag and retains them, except that matching tiles are put aside as soon as they appear in the player's hand. The game ends if the player ever holds three tiles, no two of which match; otherwise the drawing continues until the bag is empty. The probability that the bag will be emptied is $p/q,\,$ where $p\,$ and $q\,$ are relatively prime positive integers. Find $p+q.\,$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

1994 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions