Difference between revisions of "1986 AIME Problems/Problem 5"
m (→See also: .. typo) |
(→Solution: synthetic substitution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
If <math>n+10 \mid n^3+100</math>, <math>\gcd(n^3+100,n+10)=n+10</math>. Using the [[Euclidean algorithm]], we have <math>\gcd(n^3+100,n+10)= \gcd(-10n^2+100,n+10)= \gcd(100n+100,n+10)= \gcd(-900,n+10)</math>, so <math>n+10</math> must divide 900. The greatest [[integer]] <math>n</math> for which <math>n+10</math> divides 900 is 890; we can double-check manually and we find that indeed <math>900 \mid 890^3+100</math>. | If <math>n+10 \mid n^3+100</math>, <math>\gcd(n^3+100,n+10)=n+10</math>. Using the [[Euclidean algorithm]], we have <math>\gcd(n^3+100,n+10)= \gcd(-10n^2+100,n+10)= \gcd(100n+100,n+10)= \gcd(-900,n+10)</math>, so <math>n+10</math> must divide 900. The greatest [[integer]] <math>n</math> for which <math>n+10</math> divides 900 is 890; we can double-check manually and we find that indeed <math>900 \mid 890^3+100</math>. | ||
+ | |||
+ | In a similar manner, we can apply [[synthetic substitution]]. We are looking for <math>\frac{n^3 + 100}{n + 10} = n^2 - 10n - 100 - \frac{900}{n + 10}</math>. Again, <math>n + 10</math> must be a factor of <math>900 \Longrightarrow n = 890</math>. | ||
+ | |||
== See also == | == See also == | ||
* [[1986 AIME Problems]] | * [[1986 AIME Problems]] |
Revision as of 19:09, 23 March 2007
Problem
What is that largest positive integer for which is divisible by ?
Solution
If , . Using the Euclidean algorithm, we have , so must divide 900. The greatest integer for which divides 900 is 890; we can double-check manually and we find that indeed .
In a similar manner, we can apply synthetic substitution. We are looking for . Again, must be a factor of .
See also
1986 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |