Difference between revisions of "2009 AIME I Problems/Problem 1"
Tempaccount (talk | contribs) (Remove extra problem section) |
(→Solution) |
||
Line 2: | Line 2: | ||
Call a <math>3</math>-digit number ''geometric'' if it has <math>3</math> distinct digits which, when read from left to right, form a geometric sequence. Find the difference between the largest and smallest geometric numbers. | Call a <math>3</math>-digit number ''geometric'' if it has <math>3</math> distinct digits which, when read from left to right, form a geometric sequence. Find the difference between the largest and smallest geometric numbers. | ||
− | |||
− | |||
=== Solution 1 === | === Solution 1 === |
Revision as of 12:55, 6 June 2019
Problem
Call a -digit number geometric if it has distinct digits which, when read from left to right, form a geometric sequence. Find the difference between the largest and smallest geometric numbers.
Solution 1
Assume that the largest geometric number starts with a nine. We know that the common ratio must be a rational of the form for some integer , because a whole number should be attained for the 3rd term as well. When , the number is . When , the number is . When , we get , but the integers must be distinct. By the same logic, the smallest geometric number is . The largest geometric number is and the smallest is . Thus the difference is .
Solution 2
Consider the three-digit number . If its digits form a geometric sequence, we must have that , that is, .
The minimum and maximum geometric numbers occur when is minimized and maximized, respectively. The minimum occurs when ; letting and achieves this, so the smallest possible geometric number is 124.
For the maximum, we have that ; is maximized when is the greatest possible perfect square; this happens when , yielding . Thus, the largest possible geometric number is 964.
Our answer is thus .
Solution 3
The smallest geometric number is 124 because 123 and any number containing a zero does not work. 964 is the largest geometric number because the middle digit cannot be 8 or 7. Subtracting the numbers gives
See also
2009 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.