Difference between revisions of "2003 AIME I Problems/Problem 14"

m (Solution)
m (Solution)
Line 8: Line 8:
 
Otherwise, suppose the number is in the form of <math>\frac{m}{n} = 0.X251 \ldots</math>, where <math>X</math> is a string of <math>k</math> digits and <math>n</math> is small as possible. Then <math>10^k \cdot \frac{m}{n} - X = \frac{10^k m - nX}{n} = 0.251 \ldots</math>. Since <math>10^k m - nX</math> is an integer and <math>\frac{10^k m - nX}{n}</math> is a fraction between <math>0</math> and <math>1</math>, we can rewrite this as <math>\frac{10^k m - nX}{n} = \frac{p}{q}</math>, where <math>q \le n</math>. Then the fraction <math>\frac pq = 0.251 \ldots</math> suffices.  
 
Otherwise, suppose the number is in the form of <math>\frac{m}{n} = 0.X251 \ldots</math>, where <math>X</math> is a string of <math>k</math> digits and <math>n</math> is small as possible. Then <math>10^k \cdot \frac{m}{n} - X = \frac{10^k m - nX}{n} = 0.251 \ldots</math>. Since <math>10^k m - nX</math> is an integer and <math>\frac{10^k m - nX}{n}</math> is a fraction between <math>0</math> and <math>1</math>, we can rewrite this as <math>\frac{10^k m - nX}{n} = \frac{p}{q}</math>, where <math>q \le n</math>. Then the fraction <math>\frac pq = 0.251 \ldots</math> suffices.  
  
Thus we have <math>\frac{m}{n} = 0.251\ldots</math>, or  
+
Thus we have <math>\frac{m'}{n} = 0.251\ldots</math>, or  
  
<center><math>\frac{251}{1000} \le \frac{m}{n} < \frac{252}{1000} \Longleftrightarrow 251n \le 1000m < 252n \Longleftrightarrow n \le 250(4m-n) < 2n.</math></center>  
+
<center><math>\frac{251}{1000} \le \frac{m'}{n} < \frac{252}{1000} \Longleftrightarrow 251n \le 1000m' < 252n \Longleftrightarrow n \le 250(4m'-n) < 2n.</math></center>  
  
As <math>4m > n</math>, we know that the minimum value of <math>4m - n</math> is <math>1</math>; hence we need <math>250 < 2n \Longrightarrow 125 < n</math>. Since <math>4m - n = 1</math>, we need <math>n + 1</math> to be divisible by <math>4</math>, and this first occurs when <math>n = \boxed{ 127 }</math> (note that if <math>4m-n > 1</math>, then <math>n > 250</math>). Indeed, this gives <math>m = 32</math> and the fraction <math>\frac {32}{127}\approx 0.25196 \ldots</math>).
+
As <math>4m' > n</math>, we know that the minimum value of <math>4m' - n</math> is <math>1</math>; hence we need <math>250 < 2n \Longrightarrow 125 < n</math>. Since <math>4m' - n = 1</math>, we need <math>n + 1</math> to be divisible by <math>4</math>, and this first occurs when <math>n = \boxed{ 127 }</math> (note that if <math>4m'-n > 1</math>, then <math>n > 250</math>). Indeed, this gives <math>m' = 32</math> and the fraction <math>\frac {32}{127}\approx 0.25196 \ldots</math>).
  
 
== See also ==
 
== See also ==

Revision as of 23:05, 29 June 2021

Problem

The decimal representation of $m/n,$ where $m$ and $n$ are relatively prime positive integers and $m < n,$ contains the digits $2, 5$, and $1$ consecutively, and in that order. Find the smallest value of $n$ for which this is possible.

Solution

To find the smallest value of $n$, we consider when the first three digits after the decimal point are $0.251\ldots$.


Otherwise, suppose the number is in the form of $\frac{m}{n} = 0.X251 \ldots$, where $X$ is a string of $k$ digits and $n$ is small as possible. Then $10^k \cdot \frac{m}{n} - X = \frac{10^k m - nX}{n} = 0.251 \ldots$. Since $10^k m - nX$ is an integer and $\frac{10^k m - nX}{n}$ is a fraction between $0$ and $1$, we can rewrite this as $\frac{10^k m - nX}{n} = \frac{p}{q}$, where $q \le n$. Then the fraction $\frac pq = 0.251 \ldots$ suffices.

Thus we have $\frac{m'}{n} = 0.251\ldots$, or

$\frac{251}{1000} \le \frac{m'}{n} < \frac{252}{1000} \Longleftrightarrow 251n \le 1000m' < 252n \Longleftrightarrow n \le 250(4m'-n) < 2n.$

As $4m' > n$, we know that the minimum value of $4m' - n$ is $1$; hence we need $250 < 2n \Longrightarrow 125 < n$. Since $4m' - n = 1$, we need $n + 1$ to be divisible by $4$, and this first occurs when $n = \boxed{ 127 }$ (note that if $4m'-n > 1$, then $n > 250$). Indeed, this gives $m' = 32$ and the fraction $\frac {32}{127}\approx 0.25196 \ldots$).

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png