Difference between revisions of "2016 AIME I Problems/Problem 9"

(Solution)
Line 2: Line 2:
 
Triangle <math>ABC</math> has <math>AB=40,AC=31,</math> and <math>\sin{A}=\frac{1}{5}</math>. This triangle is inscribed in rectangle <math>AQRS</math> with <math>B</math> on <math>\overline{QR}</math> and <math>C</math> on <math>\overline{RS}</math>. Find the maximum possible area of <math>AQRS</math>.
 
Triangle <math>ABC</math> has <math>AB=40,AC=31,</math> and <math>\sin{A}=\frac{1}{5}</math>. This triangle is inscribed in rectangle <math>AQRS</math> with <math>B</math> on <math>\overline{QR}</math> and <math>C</math> on <math>\overline{RS}</math>. Find the maximum possible area of <math>AQRS</math>.
 
==Solution==
 
==Solution==
 +
 +
===Solution 1===
 
Note that if angle <math>BAC</math> is obtuse, it would be impossible for the triangle to inscribed in a rectangle. This can easily be shown by drawing triangle ABC, where <math>A</math> is obtuse. Therefore, angle A is acute. Let angle <math>CAS=n</math> and angle <math>BAQ=m</math>. Then, <math>\overline{AS}=31\cos(n)</math> and <math>\overline{AQ}=40\cos(m)</math>. Then the area of rectangle <math>AQRS</math> is <math>1240\cos(m)\cos(n)</math>. By product-to-sum, <math>\cos(m)\cos(n)=\frac{1}{2}(\cos(m+n)+\cos(m-n))</math>. Since <math>\cos(m+n)=\sin(90-m-n)=\sin(BAC)=\frac{1}{5}</math>. The maximum possible value of <math>\cos(m-n)</math> is 1, which occurs when <math>m=n</math>. Thus the maximum possible value of <math>\cos(m)\cos(n)</math> is <math>\frac{1}{2}(\frac{1}{5}+1)=\frac{3}{5}</math> so the maximum possible area of <math>AQRS</math> is <math>1240\times{\frac{3}{5}}=\fbox{744}</math>.
 
Note that if angle <math>BAC</math> is obtuse, it would be impossible for the triangle to inscribed in a rectangle. This can easily be shown by drawing triangle ABC, where <math>A</math> is obtuse. Therefore, angle A is acute. Let angle <math>CAS=n</math> and angle <math>BAQ=m</math>. Then, <math>\overline{AS}=31\cos(n)</math> and <math>\overline{AQ}=40\cos(m)</math>. Then the area of rectangle <math>AQRS</math> is <math>1240\cos(m)\cos(n)</math>. By product-to-sum, <math>\cos(m)\cos(n)=\frac{1}{2}(\cos(m+n)+\cos(m-n))</math>. Since <math>\cos(m+n)=\sin(90-m-n)=\sin(BAC)=\frac{1}{5}</math>. The maximum possible value of <math>\cos(m-n)</math> is 1, which occurs when <math>m=n</math>. Thus the maximum possible value of <math>\cos(m)\cos(n)</math> is <math>\frac{1}{2}(\frac{1}{5}+1)=\frac{3}{5}</math> so the maximum possible area of <math>AQRS</math> is <math>1240\times{\frac{3}{5}}=\fbox{744}</math>.
 
-AkashD
 
-AkashD
 +
 +
===Solution 2===
 +
As above, we note that angle <math>A</math> must be acute. Therefore, let <math>A</math> be the origin, and suppose that <math>Q</math> is on the positive <math>x</math> axis and <math>S</math> is on the positive <math>y</math> axis. We approach this using complex numbers. Let <math>w=\text{cis} A</math>, and let <math>z</math> be a complex number with <math>|z|=1</math>, <math>\text{Arg}(z)\ge 0^\circ</math>  and <math>\text{Arg}(zw)\le90^\circ</math>. Then we represent <math>B</math> by <math>40z</math> and <math>C</math> by <math>31zw</math>. The coordinates of <math>Q</math> and <math>S</math> depend on the real part of <math>40z</math> and the imaginary part of <math>31zw</math>. Thus
 +
<cmath>[AQRS]=\Re(40z)\cdot \Im(31zw)=1240\left(\frac{z+\overline{z}}{2}\right)\left(\frac{zw-\overline{zw}}{2i}\right).</cmath>
 +
We can expand this, using the fact that <math>z\overline{z}=|z|^2</math>, finding
 +
<cmath>[AQRS]=620\left(\frac{z^2w-\overline{z^2w}+w-\overline{w}}{2i}\right)=620(\Im(z^2w)+\Im(w)).</cmath>
 +
Now as <math>w=\text{cis}A</math>, we know that <math>\Im(w)=\frac15</math>. Also, <math>|z^2w|=1</math>, so the maximum possible imaginary part of <math>z^2w</math> is <math>1</math>. This is clearly achievable under our conditions on <math>z</math>. Therefore, the maximum possible area of <math>AQRS</math> is <math>620(1+\tfrac15)=\boxed{744}</math>.
 +
 
=See Also=
 
=See Also=
 
{{AIME box|year=2016|n=I|num-b=8|num-a=10}}
 
{{AIME box|year=2016|n=I|num-b=8|num-a=10}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 03:39, 5 March 2016

Problem

Triangle $ABC$ has $AB=40,AC=31,$ and $\sin{A}=\frac{1}{5}$. This triangle is inscribed in rectangle $AQRS$ with $B$ on $\overline{QR}$ and $C$ on $\overline{RS}$. Find the maximum possible area of $AQRS$.

Solution

Solution 1

Note that if angle $BAC$ is obtuse, it would be impossible for the triangle to inscribed in a rectangle. This can easily be shown by drawing triangle ABC, where $A$ is obtuse. Therefore, angle A is acute. Let angle $CAS=n$ and angle $BAQ=m$. Then, $\overline{AS}=31\cos(n)$ and $\overline{AQ}=40\cos(m)$. Then the area of rectangle $AQRS$ is $1240\cos(m)\cos(n)$. By product-to-sum, $\cos(m)\cos(n)=\frac{1}{2}(\cos(m+n)+\cos(m-n))$. Since $\cos(m+n)=\sin(90-m-n)=\sin(BAC)=\frac{1}{5}$. The maximum possible value of $\cos(m-n)$ is 1, which occurs when $m=n$. Thus the maximum possible value of $\cos(m)\cos(n)$ is $\frac{1}{2}(\frac{1}{5}+1)=\frac{3}{5}$ so the maximum possible area of $AQRS$ is $1240\times{\frac{3}{5}}=\fbox{744}$. -AkashD

Solution 2

As above, we note that angle $A$ must be acute. Therefore, let $A$ be the origin, and suppose that $Q$ is on the positive $x$ axis and $S$ is on the positive $y$ axis. We approach this using complex numbers. Let $w=\text{cis} A$, and let $z$ be a complex number with $|z|=1$, $\text{Arg}(z)\ge 0^\circ$ and $\text{Arg}(zw)\le90^\circ$. Then we represent $B$ by $40z$ and $C$ by $31zw$. The coordinates of $Q$ and $S$ depend on the real part of $40z$ and the imaginary part of $31zw$. Thus \[[AQRS]=\Re(40z)\cdot \Im(31zw)=1240\left(\frac{z+\overline{z}}{2}\right)\left(\frac{zw-\overline{zw}}{2i}\right).\] We can expand this, using the fact that $z\overline{z}=|z|^2$, finding \[[AQRS]=620\left(\frac{z^2w-\overline{z^2w}+w-\overline{w}}{2i}\right)=620(\Im(z^2w)+\Im(w)).\] Now as $w=\text{cis}A$, we know that $\Im(w)=\frac15$. Also, $|z^2w|=1$, so the maximum possible imaginary part of $z^2w$ is $1$. This is clearly achievable under our conditions on $z$. Therefore, the maximum possible area of $AQRS$ is $620(1+\tfrac15)=\boxed{744}$.

See Also

2016 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png