Difference between revisions of "1986 AIME Problems/Problem 9"
m (Added point P in second solution) |
m (Added simplification from 4th solution to 1st solution) |
||
Line 27: | Line 27: | ||
Notice that <math>Z</math> has mass <math>x+y</math>. On the other hand, by similar triangles, <math>\frac{CP}{CZ} = \frac{d}{AB}</math>. Hence by mass points we find that <cmath> \frac{x+y}{x+y+z} = \frac{d}{AB} </cmath> Similarly, we obtain <cmath> \frac{y+z}{x+y+z} = \frac{d}{BC} \qquad \text{and} \qquad \frac{z+x}{x+y+z} = \frac{d}{CA} </cmath> Summing these three equations yields <cmath> \frac{d}{AB} + \frac{d}{BC} + \frac{d}{CA} = \frac{x+y}{x+y+z} + \frac{y+z}{x+y+z} + \frac{z+x}{x+y+z} = \frac{2x+2y+2z}{x+y+z} = 2 </cmath> | Notice that <math>Z</math> has mass <math>x+y</math>. On the other hand, by similar triangles, <math>\frac{CP}{CZ} = \frac{d}{AB}</math>. Hence by mass points we find that <cmath> \frac{x+y}{x+y+z} = \frac{d}{AB} </cmath> Similarly, we obtain <cmath> \frac{y+z}{x+y+z} = \frac{d}{BC} \qquad \text{and} \qquad \frac{z+x}{x+y+z} = \frac{d}{CA} </cmath> Summing these three equations yields <cmath> \frac{d}{AB} + \frac{d}{BC} + \frac{d}{CA} = \frac{x+y}{x+y+z} + \frac{y+z}{x+y+z} + \frac{z+x}{x+y+z} = \frac{2x+2y+2z}{x+y+z} = 2 </cmath> | ||
− | Hence, < | + | Hence, <center><math> d = \frac{2}{\frac{1}{AB} + \frac{1}{BC} + \frac{1}{CA}} = \frac{2}{\frac{1}{510} + \frac{1}{450} + \frac{1}{425}} = \frac{10}{\frac{1}{85}+\frac{1}{90}+\frac{1}{102}}</math><math>=\frac{10}{\frac{1}{5}\left(\frac{1}{17}+\frac{1}{18}\right)+\frac{1}{102}}=\frac{10}{\frac{1}{5}\cdot\frac{35}{306}+\frac{3}{306}}=\frac{10}{\frac{10}{306}} = \boxed{306}</math></center> |
+ | |||
=== Solution 2 === | === Solution 2 === |
Revision as of 21:43, 13 March 2015
Problem
In , , , and . An interior point is then drawn, and segments are drawn through parallel to the sides of the triangle. If these three segments are of an equal length , find .
Contents
Solution
Solution 1 (mass points)
Construct cevians , and through . Place masses of on , and respectively; then has mass .
Notice that has mass . On the other hand, by similar triangles, . Hence by mass points we find that Similarly, we obtain Summing these three equations yields
Hence,
Solution 2
Let the points at which the segments hit the triangle be called as shown above. As a result of the lines being parallel, all three smaller triangles and the larger triangle are similar (). The remaining three sections are parallelograms.
Since is a parallelogram, we find , and similarly . So . Thus . By the same logic, .
Since , we have the proportion:
Doing the same with , we find that . Now, .
Solution 3
Define the points the same as above.
Let , , , , and
The key theorem we apply here is that the ratio of the areas of 2 similar triangles is the ratio of a pair of corresponding sides squared.
Let the length of the segment be and the area of the triangle be , using the theorem, we get:
, , adding all these together and using we get
Using corresponding angles from parallel lines, it is easy to show that , since and are parallelograms, it is easy to show that
Now we have the side length ratio, so we have the area ratio , by symmetry, we have and
Substituting these into our initial equation, we have answer follows after some hideous computation.
Solution 4
Refer to the diagram in solution 2; let , , and . Now, note that , , and are similar, so through some similarities we find that . Similarly, we find that and , so . Now, again from similarity, it follows that , , and , so adding these together, simplifying, and solving gives .
See also
1986 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.