Difference between revisions of "2003 AIME I Problems/Problem 15"

(Solution)
(Solution 1)
Line 4: Line 4:
 
== Solution ==
 
== Solution ==
  
=== Solution 1 ===
+
In the following, let the name of a point represent the mass located there. Since we are looking for a ratio, we assume that <math>AB=120</math>, <math>BC=169</math>, and <math>CA=260</math> in order to simplify our computations.
 +
 
 +
First, reflect point <math>F</math> over angle bisector <math>BD</math> to a point <math>F'</math>.
 
<center><asy>
 
<center><asy>
 
size(400); pointpen = black; pathpen = black+linewidth(0.7);  
 
size(400); pointpen = black; pathpen = black+linewidth(0.7);  
pair A=(0,0),C=(7.8,0),B=IP(CR(A,3.6),CR(C,5.07)), M=(A+C)/2, Da = bisectorpoint(A,B,C), D=IP(B--B+(Da-B)*10,A--C), F=IP(D--D+10*(B-D)*dir(270),B--C), E=IP(B--M,D--F); /* scale down by 100x */
+
pair A=(0,0),C=(7.8,0),B=IP(CR(A,3.6),CR(C,5.07)), M=(A+C)/2, Da = bisectorpoint(A,B,C), D=IP(B--B+(Da-B)*10,A--C), F=IP(D--D+10*(B-D)*dir(270),B--C), E=IP(B--M,D--F);pair Fprime=2*D-F; /* scale down by 100x */
D(MP("A",A)--MP("B",B,N)--MP("C",C)--cycle); D(B--D(MP("D",D))--D(MP("F",F,NE))); D(B--D(MP("M",M))); MP("E",E,NE); D(rightanglemark(F,D,B,4)); MP("390",(M+C)/2); MP("390",(M+C)/2); MP("360",(A+B)/2,NW); MP("507",(B+C)/2,NE);
+
D(MP("A",A,NW)--MP("B",B,N)--MP("C",C)--cycle); D(B--D(MP("D",D))--D(MP("F",F,NE))); D(B--D(MP("M",M)));D(A--MP("F'",Fprime,SW)--D); MP("E",E,NE); D(rightanglemark(F,D,B,4)); MP("390",(M+C)/2); MP("390",(M+C)/2); MP("360",(A+B)/2,NW); MP("507",(B+C)/2,NE);
 
</asy></center>
 
</asy></center>
 +
As <math>BD</math> is an angle bisector of both triangles <math>BAC</math> and <math>BF'F</math>, we know that <math>F'</math> lies on <math>AB</math>. We can now balance triangle <math>BF'C</math> at point <math>D</math> using mass points.
  
For computation, instead consider the triangle as above except <math>AB = 120,BC = 169,CA = 260</math>. In the following, let the name of a point represent the mass located there.
+
By the [[Angle Bisector Theorem]], we can place [[mass points]] on <math>C,D,A</math> of <math>120,\,289,\,169</math> respectively. Thus, a mass of <math>\frac {289}{2}</math> belongs at both <math>F</math> and <math>F'</math> because BD is a median of triangle <math>BF'F</math> . Therefore, <math>CB/FB=\frac{289}{240}</math>.
  
By the [[Angle Bisector Theorem]], we can place [[mass points]] on <math>C,D,A</math> of <math>120,\,289,\,169</math> respectively. Thus, a mass of <math>\frac {289}{2}</math> belongs at <math>F</math> (seen by reflecting <math>F</math> across <math>BD</math>, to an image which lies on <math>AB</math>).
+
Now, we reassign mass points to determine <math>FE/FD</math>. This setup involves <math>\triangle CFD</math> and [[transversal]] <math>MEB</math>. For simplicity, put masses of <math>240</math> and <math>289</math> at <math>C</math> and <math>F</math> respectively. To find the mass we should put at <math>D</math>, we compute <math>CM/MD</math>. Applying the Angle Bisector Theorem again and using the fact <math>M</math> is a midpoint of <math>AC</math>, we find
Having determined <math>CB/CF</math>, we reassign mass points to determine <math>FE/FD</math>. This setup involves <math>\tri CFD</math> and [[transversal]] <math>MEB</math>. For simplicity, put masses of <math>240,289</math> at <math>C,F</math>. To find the mass we should put at <math>D</math>, we compute <math>CM/MD</math>: applying the Angle Bisector Theorem again and using the fact <math>M</math> is a midpoint, we find
 
 
<cmath>
 
<cmath>
\frac {MD}{CM} = \frac {169\cdot\frac {260}{289} - 130}{130} = \frac {49}{289}
+
\frac {MD}{CM} = \frac {\frac{169}{289}\cdot 260 - 130}{130} = \frac {49}{289}
 
</cmath>
 
</cmath>
 
At this point we could find the mass at <math>D</math> but it's unnecessary.
 
At this point we could find the mass at <math>D</math> but it's unnecessary.
 
<cmath>
 
<cmath>
\frac {DE}{EF} = \frac {F}{D} = \frac {F}{C}\frac {C}{D} = \frac {289}{240}\frac {49}{289} = \boxed{\frac {49}{240}}
+
\frac {DE}{EF} = \frac {F}{D} = \frac {F}{C}\cdot\frac {C}{D} = \frac {289}{240}\cdot\frac {49}{289} = \boxed{\frac {49}{240}}
 
</cmath>
 
</cmath>
 
and the answer is <math>49 + 240 = \boxed{289}</math>.
 
and the answer is <math>49 + 240 = \boxed{289}</math>.

Revision as of 22:46, 14 July 2013

Problem

In $\triangle ABC, AB = 360, BC = 507,$ and $CA = 780.$ Let $M$ be the midpoint of $\overline{CA},$ and let $D$ be the point on $\overline{CA}$ such that $\overline{BD}$ bisects angle $ABC.$ Let $F$ be the point on $\overline{BC}$ such that $\overline{DF} \perp \overline{BD}.$ Suppose that $\overline{DF}$ meets $\overline{BM}$ at $E.$ The ratio $DE: EF$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$

Solution

In the following, let the name of a point represent the mass located there. Since we are looking for a ratio, we assume that $AB=120$, $BC=169$, and $CA=260$ in order to simplify our computations.

First, reflect point $F$ over angle bisector $BD$ to a point $F'$.

[asy] size(400); pointpen = black; pathpen = black+linewidth(0.7);  pair A=(0,0),C=(7.8,0),B=IP(CR(A,3.6),CR(C,5.07)), M=(A+C)/2, Da = bisectorpoint(A,B,C), D=IP(B--B+(Da-B)*10,A--C), F=IP(D--D+10*(B-D)*dir(270),B--C), E=IP(B--M,D--F);pair Fprime=2*D-F; /* scale down by 100x */ D(MP("A",A,NW)--MP("B",B,N)--MP("C",C)--cycle); D(B--D(MP("D",D))--D(MP("F",F,NE))); D(B--D(MP("M",M)));D(A--MP("F'",Fprime,SW)--D); MP("E",E,NE); D(rightanglemark(F,D,B,4)); MP("390",(M+C)/2); MP("390",(M+C)/2); MP("360",(A+B)/2,NW); MP("507",(B+C)/2,NE); [/asy]

As $BD$ is an angle bisector of both triangles $BAC$ and $BF'F$, we know that $F'$ lies on $AB$. We can now balance triangle $BF'C$ at point $D$ using mass points.

By the Angle Bisector Theorem, we can place mass points on $C,D,A$ of $120,\,289,\,169$ respectively. Thus, a mass of $\frac {289}{2}$ belongs at both $F$ and $F'$ because BD is a median of triangle $BF'F$ . Therefore, $CB/FB=\frac{289}{240}$.

Now, we reassign mass points to determine $FE/FD$. This setup involves $\triangle CFD$ and transversal $MEB$. For simplicity, put masses of $240$ and $289$ at $C$ and $F$ respectively. To find the mass we should put at $D$, we compute $CM/MD$. Applying the Angle Bisector Theorem again and using the fact $M$ is a midpoint of $AC$, we find \[\frac {MD}{CM} = \frac {\frac{169}{289}\cdot 260 - 130}{130} = \frac {49}{289}\] At this point we could find the mass at $D$ but it's unnecessary. \[\frac {DE}{EF} = \frac {F}{D} = \frac {F}{C}\cdot\frac {C}{D} = \frac {289}{240}\cdot\frac {49}{289} = \boxed{\frac {49}{240}}\] and the answer is $49 + 240 = \boxed{289}$.

Solution 2

By the Angle Bisector Theorem, we know that $[CBD]=\frac{169}{289}[ABC]$. Therefore, by finding the area of triangle $CBD$, we see that \[\frac{507\cdot BD}{2}\sin\frac{B}{2}=\frac{169}{289}[ABC].\] Solving for $BD$ yields \[BD=\frac{2[ABC]}{3\cdot289\sin\frac{B}{2}}.\] Furthermore, $\cos\frac{B}{2}=\frac{BD}{BF}$, so \[BF=\frac{BD}{\cos\frac{B}{2}}=\frac{2[ABC]}{3\cdot289\sin\frac{B}{2}\cos\frac{B}{2}}.\] Now by the identity $2\sin\frac{B}{2}\cos\frac{B}{2}=\sin B$, we get \[BF=\frac{4[ABC]}{3\cdot289\sin B}.\] But then $[ABC]=\frac{360\cdot 507}{2}\sin B$, so $BF=\frac{240}{289}\cdot 507$. Thus $BF:FC=240:49$.

Now by the Angle Bisector Theorem, $CD=\frac{169}{289}\cdot 780$, and we know that $MC=\frac{1}{2}\cdot 780$ so $DM:MC=\frac{169}{289}-\frac{1}{2}:\frac{1}{2}=49:289$.

We can now use mass points on triangle CBD. Assign a mass of $240\cdot 49$ to point $C$. Then $D$ must have mass $240\cdot 289$ and $B$ must have mass $49\cdot 49$. This gives $F$ a mass of $240\cdot 49+49\cdot 49=289\cdot 49$. Therefore, $DE:EF=\frac{289\cdot 49}{240\cdot 289}=\frac{49}{240}$, giving us an answer of $\boxed{289}.$

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png