Difference between revisions of "2003 AMC 10B Problems/Problem 19"

Line 1: Line 1:
 +
{{duplicate|[[2003 AMC 12B Problems|2003 AMC 12B #16]] and [[2003 AMC 10B Problems|2003 AMC 10B #19]]}}
 +
 +
 
==Problem==
 
==Problem==
 
==Problem 19==
 
  
 
Three semicircles of radius <math>1</math> are constructed on diameter <math>\overline{AB}</math> of a semicircle of radius <math>2</math>. The centers of the small semicircles divide <math>\overline{AB}</math> into four line segments of equal length, as shown. What is the area of the shaded region that lies within the large semicircle but outside the smaller semicircles?
 
Three semicircles of radius <math>1</math> are constructed on diameter <math>\overline{AB}</math> of a semicircle of radius <math>2</math>. The centers of the small semicircles divide <math>\overline{AB}</math> into four line segments of equal length, as shown. What is the area of the shaded region that lies within the large semicircle but outside the smaller semicircles?
Line 80: Line 81:
  
 
==See Also==
 
==See Also==
 +
{{AMC12 box|year=2003|ab=B|num-b=15|num-a=17}}
 
{{AMC10 box|year=2003|ab=B|num-b=18|num-a=20}}
 
{{AMC10 box|year=2003|ab=B|num-b=18|num-a=20}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:06, 5 January 2014

The following problem is from both the 2003 AMC 12B #16 and 2003 AMC 10B #19, so both problems redirect to this page.


Problem

Three semicircles of radius $1$ are constructed on diameter $\overline{AB}$ of a semicircle of radius $2$. The centers of the small semicircles divide $\overline{AB}$ into four line segments of equal length, as shown. What is the area of the shaded region that lies within the large semicircle but outside the smaller semicircles?

[asy] import graph; unitsize(14mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dashed=linetype("4 4"); dotfactor=3; pair A=(-2,0), B=(2,0); fill(Arc((0,0),2,0,180)--cycle,mediumgray); fill(Arc((-1,0),1,0,180)--cycle,white); fill(Arc((0,0),1,0,180)--cycle,white); fill(Arc((1,0),1,0,180)--cycle,white); draw(Arc((-1,0),1,60,180)); draw(Arc((0,0),1,0,60),dashed); draw(Arc((0,0),1,60,120)); draw(Arc((0,0),1,120,180),dashed); draw(Arc((1,0),1,0,120)); draw(Arc((0,0),2,0,180)--cycle); dot((0,0)); dot((-1,0)); dot((1,0)); draw((-2,-0.1)--(-2,-0.3),gray); draw((-1,-0.1)--(-1,-0.3),gray); draw((1,-0.1)--(1,-0.3),gray); draw((2,-0.1)--(2,-0.3),gray); label("$A$",A,W); label("$B$",B,E); label("1",(-1.5,-0.1),S); label("2",(0,-0.1),S); label("1",(1.5,-0.1),S);[/asy]

$\textbf{(A) } \pi - \sqrt{3} \qquad\textbf{(B) } \pi - \sqrt{2} \qquad\textbf{(C) } \frac{\pi + \sqrt{2}}{2} \qquad\textbf{(D) } \frac{\pi +\sqrt{3}}{2} \qquad\textbf{(E) } \frac{7}{6}\pi - \frac{\sqrt{3}}{2}$

Solution

[asy] import graph; unitsize(14mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dashed=linetype("4 4"); dotfactor=3; pair A=(-2,0), B=(2,0); fill(Arc((0,0),2,0,180)--cycle,mediumgray); fill(Arc((-1,0),1,0,180)--cycle,white); fill(Arc((0,0),1,0,180)--cycle,white); fill(Arc((1,0),1,0,180)--cycle,white); draw(Arc((-1,0),1,60,180)); draw(Arc((0,0),1,0,60),dashed); draw(Arc((0,0),1,60,120)); draw(Arc((0,0),1,120,180),dashed); draw(Arc((1,0),1,0,120)); draw(Arc((0,0),2,0,180)--cycle); dot((0,0)); dot((-1,0)); dot((1,0)); draw((-2,-0.1)--(-2,-0.3),gray); draw((-1,-0.1)--(-1,-0.3),gray); draw((1,-0.1)--(1,-0.3),gray); draw((2,-0.1)--(2,-0.3),gray); label("$A$",A,W); label("$B$",B,E); label("1",(-1.5,-0.1),S); label("2",(0,-0.1),S); label("1",(1.5,-0.1),S); draw((1,0)--(0.5,0.866)); draw((0,0)--(0.5,0.866)); draw((-1,0)--(-0.5,0.866)); draw((0,0)--(-0.5,0.866));[/asy]

By drawing four lines from the intersect of the semicircles to their centers, we have split the white region into $\frac{5}{6}$ of a circle with radius $1$ and two equilateral triangles with side length $1$. This gives the area of the white region as $\frac{5}{6}\pi+\frac{2\cdot\sqrt3}{4}=\frac{5}{6}\pi+\frac{\sqrt3}{2}$. The area of the shaded region is the area of the white region subtracted from the area of the large semicircle. This is equivalent to $2\pi-\frac{5}{6}\pi+\frac{\sqrt3}{2}=\frac{7}{6}\pi-\frac{\sqrt3}{2}$.

Thus the answer is $\boxed{\textbf{(E)}\ \frac{7}{6}\pi-\frac{\sqrt3}{2}}$.

See Also

2003 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2003 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png