Difference between revisions of "2006 AMC 12A Problems/Problem 17"

(See also)
Line 7: Line 7:
  
 
== Solution ==
 
== Solution ==
 +
===Solution 1===
 
One possibility is to use the [[coordinate plane]], setting <math>B</math> at the origin. Point <math>A</math> will be <math>(0,s)</math> and <math>E</math> will be <math>\left(s + \frac{r}{\sqrt{2}},\ s + \frac{r}{\sqrt{2}}\right)</math> since <math>B, D</math>, and <math>E</math> are [[collinear]] and contain a diagonal of <math>ABCD</math>. The [[Pythagorean theorem]] results in
 
One possibility is to use the [[coordinate plane]], setting <math>B</math> at the origin. Point <math>A</math> will be <math>(0,s)</math> and <math>E</math> will be <math>\left(s + \frac{r}{\sqrt{2}},\ s + \frac{r}{\sqrt{2}}\right)</math> since <math>B, D</math>, and <math>E</math> are [[collinear]] and contain a diagonal of <math>ABCD</math>. The [[Pythagorean theorem]] results in
  
Line 18: Line 19:
  
 
This implies that <math>rs = 5</math> and <math>s^2 = 9</math>; dividing gives us <math>\frac{r}{s} = \frac{5}{9} \Rightarrow B</math>.
 
This implies that <math>rs = 5</math> and <math>s^2 = 9</math>; dividing gives us <math>\frac{r}{s} = \frac{5}{9} \Rightarrow B</math>.
 +
 +
===Solution 2===
 +
First draw the line <math>\overline{AE}</math>. Since <math>\overline{AF}</math> is tangent to the circle, <math>\angle AFE</math> is a right angle. Using the Pythagorean Theorem on <math>\triangle AFE</math>, then, we see
 +
<cmath>AE^2 = 9 + 5\sqrt{2} + r^2.</cmath>
 +
 +
But it can also be seen that <math>\angle ADE = 45^\circ</math> since <math>E</math> lies on <math>BD</math>. Therefore, <math>\angle ADE = 135^\circ</math>. Using the Law of Cosines on <math>\triangle ADE</math>, we see
 +
 +
<cmath>AE^2 &= s^2 + r^2 - 2sr\cos(135^\circ)</cmath>
 +
<cmath>AE^2 = s^2 + r^2 - 2sr\left(-\frac{1}{\sqrt{2}}\right)</cmath>
 +
<cmath>AE^2 = s^2 + r^2 + \sqrt{2}sr</cmath>
 +
<cmath>9 + 5\sqrt{2} + r^2 = s^2 + r^2 + \sqrt{2}sr</cmath>
 +
<cmath>9 + 5\sqrt{2} = s^2 + \sqrt{2}sr.</cmath>
 +
 +
Thus, since <math>r</math> and <math>s</math> are rational, <math>s^2 = 9</math> and <math>sr = 5</math>. So <math>s = 3</math> and <math>r = \frac{5}{3}</math> and <math>\frac{r}{s} = \frac{5}{9}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 18:09, 8 December 2013

Problem

Square $ABCD$ has side length $s$, a circle centered at $E$ has radius $r$, and $r$ and $s$ are both rational. The circle passes through $D$, and $D$ lies on $\overline{BE}$. Point $F$ lies on the circle, on the same side of $\overline{BE}$ as $A$. Segment $AF$ is tangent to the circle, and $AF=\sqrt{9+5\sqrt{2}}$. What is $r/s$?

$\mathrm{(A) \ } \frac{1}{2}\qquad \mathrm{(B) \ } \frac{5}{9}\qquad \mathrm{(C) \ } \frac{3}{5}\qquad \mathrm{(D) \ } \frac{5}{3}\qquad \mathrm{(E) \ }  \frac{9}{5}$

AMC12 2006A 17.png

Solution

Solution 1

One possibility is to use the coordinate plane, setting $B$ at the origin. Point $A$ will be $(0,s)$ and $E$ will be $\left(s + \frac{r}{\sqrt{2}},\ s + \frac{r}{\sqrt{2}}\right)$ since $B, D$, and $E$ are collinear and contain a diagonal of $ABCD$. The Pythagorean theorem results in

\[AF^2 + EF^2 = AE^2\]

\[r^2  + \left(\sqrt{9 + 5\sqrt{2}}\right)^2  = \left(\left(s + \frac{r}{\sqrt{2}}\right) - 0\right)^2 + \left(\left(s + \frac{r}{\sqrt{2}}\right) - s\right)^2\]

\[r^2  + 9 + 5\sqrt{2} = s^2 + rs\sqrt{2} + \frac{r^2}{2} + \frac{r^2}{2}\]

\[9 + 5\sqrt{2} = s^2 + rs\sqrt{2}\]

This implies that $rs = 5$ and $s^2 = 9$; dividing gives us $\frac{r}{s} = \frac{5}{9} \Rightarrow B$.

Solution 2

First draw the line $\overline{AE}$. Since $\overline{AF}$ is tangent to the circle, $\angle AFE$ is a right angle. Using the Pythagorean Theorem on $\triangle AFE$, then, we see \[AE^2 = 9 + 5\sqrt{2} + r^2.\]

But it can also be seen that $\angle ADE = 45^\circ$ since $E$ lies on $BD$. Therefore, $\angle ADE = 135^\circ$. Using the Law of Cosines on $\triangle ADE$, we see

\[AE^2 &= s^2 + r^2 - 2sr\cos(135^\circ)\] (Error compiling LaTeX. Unknown error_msg)

\[AE^2 = s^2 + r^2 - 2sr\left(-\frac{1}{\sqrt{2}}\right)\] \[AE^2 = s^2 + r^2 + \sqrt{2}sr\] \[9 + 5\sqrt{2} + r^2 = s^2 + r^2 + \sqrt{2}sr\] \[9 + 5\sqrt{2} = s^2 + \sqrt{2}sr.\]

Thus, since $r$ and $s$ are rational, $s^2 = 9$ and $sr = 5$. So $s = 3$ and $r = \frac{5}{3}$ and $\frac{r}{s} = \frac{5}{9}$.

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png