Difference between revisions of "2007 AMC 8 Problems/Problem 7"
Basketball8 (talk | contribs) (→Solution) |
(→Solution 1) |
||
Line 20: | Line 20: | ||
<math>x = 33</math> | <math>x = 33</math> | ||
− | + | Therefore, the answer is <math> \boxed{\textbf{(D)}\ 33} </math> | |
==Solution 2== | ==Solution 2== |
Revision as of 12:12, 9 December 2012
Contents
Problem
The average age of people in a room is years. An -year-old person leaves the room. What is the average age of the four remaining people?
Solution 1
Let be the average of the remaining people.
The equation we get is
Simplify,
Therefore, the answer is
Solution 2
Since an year old left from a group of people averaging , The remaining people must total years older than . Therefore, the average is years over . Giving us .
See Also
2007 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |