Difference between revisions of "2004 AMC 8 Problems"
(→Problem 9) |
Purplecheese (talk | contribs) (→Problem 20) |
||
Line 116: | Line 116: | ||
==Problem 20== | ==Problem 20== | ||
+ | |||
+ | "Two thirds pf the people in a room are seated in three fourths of the chairs. The rest of the people are standing. If there are 6 empty chairs, how many people are in the room?" | ||
+ | |||
+ | From: http://faculty.wiu.edu/JR-Olsen/wiu/contests/AMC/pastAMC/AMC-2010-Disc/AMC%208/Contests%20and%20Solutions/2004AMC8.pdf | ||
==Problem 21== | ==Problem 21== |
Revision as of 12:27, 5 November 2012
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
Problem 1
Ona map, a -centimeter length represents kilometers. How many kilometers does a -centimeter length represent?
Problem 2
How many different four-digit numbers can be formed be rearranging the four digits in ?
Problem 3
Twelve friends met for dinner at Oscar's Overstuffed Oyster House, and each ordered one meal. The portions were so large, there was enough food for people. If they shared, how many meals should they have ordered to have just enough food for the of them?
Problem 4
The following information is needed to solve problems 4, 5 and 6.
Ms. Hamilton’s eighth-grade class wants to participate in the annual three-person-team basketball tournament.
Lance, Sally, Joy, and Fred are chosen for the team. In how many ways can the three starters be chosen?
Problem 5
The losing team of each game is eliminated from the tournament. If sixteen teams compete, how many games will be played to determine the winner?
Problem 6
After Sally takes shots, she has made of her shots. After she takes more shots, she raises her percentage to . How many of the last shots did she make?
Problem 7
An athlete's target heart rate, in beats per minute, is of the theoretical maximum heart rate. The maximum heart rate is found by subtracting the athlete's age, in years, from . To the nearest whole number, what is the target heart rate of an athlete who is years old?
Problem 8
Find the number of two-digit positive integers whose digits total .
Problem 9
The average of the five numbers in a list is . The average of the first two numbers is . What is the average of the last three numbers?
Problem 10
Problem 11
The numbers , , , and are rearranged according to these rules:
1. The largest isn’t first, but it is in one of the first three places. 2. The smallest isn’t last, but it is in one of the last three places. 3. The median isn’t first or last.
What is the average of the first and last numbers?
Problem 12
Niki usually leaves her cell phone on. If her cell phone is on but she is not actually using it, the battery will last for hours. If she is using it constantly, the battery will last for only hours. Since the last recharge, her phone has been on hours, and during that time she has used it for minutes. If she doesn’t talk any more but leaves the phone on, how many more hours will the battery last?
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
"Two thirds pf the people in a room are seated in three fourths of the chairs. The rest of the people are standing. If there are 6 empty chairs, how many people are in the room?"