Difference between revisions of "1995 AHSME Problems/Problem 17"
m (→Problem: <asy> by dragon96) |
(Fixed mislabeling in the diagram.) |
||
Line 12: | Line 12: | ||
} | } | ||
− | label("$ | + | label("$B$", origin+1*dir(36+72*0), dir(origin--origin+1*dir(36+72*0))); |
− | label("$ | + | label("$A$", origin+1*dir(36+72*1), dir(origin--origin+1*dir(36+72))); |
− | label("$ | + | label("$E$", origin+1*dir(36+72*2), dir(origin--origin+1*dir(36+144))); |
label("$D$", origin+1*dir(36+72*3), dir(origin--origin+1*dir(36+72*3))); | label("$D$", origin+1*dir(36+72*3), dir(origin--origin+1*dir(36+72*3))); | ||
− | label("$ | + | label("$C$", origin+1*dir(36+72*4), dir(origin--origin+1*dir(36+72*4))); |
</asy> | </asy> | ||
Revision as of 22:54, 18 August 2011
Problem
Given regular pentagon , a circle can be drawn that is tangent to at and to at . The number of degrees in minor arc is
Solution
Define major arc DA as , and minor arc DA as . Extending DC and AB to meet at F, we see that . We now have two equations: , and . Solving, and .
See also
1995 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |