Difference between revisions of "1994 AIME Problems/Problem 8"
(→Solution) |
(→Solution) |
||
Line 13: | Line 13: | ||
Solving this system, we find that <math>a=21\sqrt{3}, b=5\sqrt{3}</math>. Thus, the answer is <math>\boxed{315}</math>. | Solving this system, we find that <math>a=21\sqrt{3}, b=5\sqrt{3}</math>. Thus, the answer is <math>\boxed{315}</math>. | ||
− | ''Note'': There is another solution where the point <math>b+37i</math> is a rotation of <math>-60</math> degrees of <math>a+11i</math>; however, this | + | '''Note''': There is another solution where the point <math>b+37i</math> is a rotation of <math>-60</math> degrees of <math>a+11i</math>; however, this triangle is just a reflection of the first triangle by the <math>y</math>-axis, and the signs of <math>a</math> and <math>b</math> are switched. However, the product <math>ab</math> is unchanged. |
== See also == | == See also == |
Revision as of 20:14, 27 February 2011
Problem
The points , , and are the vertices of an equilateral triangle. Find the value of .
Solution
Consider the points on the complex plane. The point is then a rotation of degrees of about the origin, so:
Equating the real and imaginary parts, we have:
Solving this system, we find that . Thus, the answer is .
Note: There is another solution where the point is a rotation of degrees of ; however, this triangle is just a reflection of the first triangle by the -axis, and the signs of and are switched. However, the product is unchanged.
See also
1994 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |