Difference between revisions of "2025 AIME II Problems/Problem 4"
(→Solution 1) |
|||
Line 24: | Line 24: | ||
(Feel free to correct any latexes and formats) | (Feel free to correct any latexes and formats) | ||
~Mitsuihisashi14 | ~Mitsuihisashi14 | ||
+ | |||
+ | == Solution 2== | ||
+ | |||
+ | We can move the exponents to the front of the logarithms like this: | ||
+ | \begin{align*} | ||
+ | \frac{\log_4 (5^{15})}{\log_5 (5^{12})} \cdot \frac{\log_5 (5^{24})}{\log_6 (5^{21})}\cdot \frac{\log_6 (5^{35})}{\log_7 (5^{32})} \cdots = \frac{15\log_4 (5)}{12\log_5 (5)} \cdot \frac{24\log_5 (5)}{21\log_6 (5)}\cdot \frac{35\log_6 (5)}{32\log_7 (5)} \cdots | ||
+ | \end{align*} | ||
+ | Now we multiply the logs and fractions seperately.\\ | ||
+ | Let's do it for the logs first: | ||
+ | \begin{align*} | ||
+ | \frac{\log_4 (5)}{\log_5 (5)} \cdot \frac{\log_5 (5)}{\log_6 (5)}\cdot \frac{\log_6 (5)}{\log_7 (5)} \cdots \frac{\log_{63} (5)}{\log_{64} (5)} = \frac{\log_4 (5)}{\log_{64} (5)} = 3 | ||
+ | \end{align*} | ||
+ | Now fractions: | ||
+ | \begin{align*} | ||
+ | \frac{15}{12} \cdot \frac{24}{21} \cdot \frac{35}{32} \cdots = \frac{3\cdot 5}{2\cdot 6} \cdot \frac{4\cdot 6}{3\cdot 7} \cdot \frac{5\cdot 7}{4\cdot 8} \cdots \frac{62\cdot 64}{61\cdot 65} = \frac{5}{2} \cdot \frac{62}{65} = \frac{31}{13} | ||
+ | \end{align*} | ||
+ | Multiplying these together gets us the original product, which is <math>\frac{31}{13} \cdot 3 = \frac{93}{13}</math>.\\ | ||
+ | Thus <math>m+n=\boxed{106}</math>. | ||
+ | |||
+ | ==See also== | ||
+ | {{AIME box|year=2025|num-b=3|num-a=5|n=II}} | ||
+ | |||
+ | {{MAA Notice}} |
Revision as of 22:09, 13 February 2025
Contents
Problem
The productis equal to
where
and
are relatively prime positive integers. Find
Solution 1
We can rewrite the equation as:
= 15/12 * 24/21 * 35/32 * ... * 3968/3965 * \log_4 5 / \log_64 5
= \log_4 64 * (4+1)(4-1)(5+1)(5-1)* ... * (63+1)(63-1)/(4+2)(4-2)(5+2)(5-2)* ... * (63+2)(63-2)
= 3 * 5 * 3 * 6 * 4 * ... * 64 * 62 / 6 * 2 * 7 * 3 * ... * 65 * 61
= 3 * 5 * 62 / 65 * 2
= 3 * 5 * 2 * 31 / 5 * 13 * 2
= 3 * 31 / 13
= 93/13
Desired answer: 93 + 13 = 106
(Feel free to correct any latexes and formats) ~Mitsuihisashi14
Solution 2
We can move the exponents to the front of the logarithms like this:
\begin{align*}
\frac{\log_4 (5^{15})}{\log_5 (5^{12})} \cdot \frac{\log_5 (5^{24})}{\log_6 (5^{21})}\cdot \frac{\log_6 (5^{35})}{\log_7 (5^{32})} \cdots = \frac{15\log_4 (5)}{12\log_5 (5)} \cdot \frac{24\log_5 (5)}{21\log_6 (5)}\cdot \frac{35\log_6 (5)}{32\log_7 (5)} \cdots
\end{align*}
Now we multiply the logs and fractions seperately.\\
Let's do it for the logs first:
\begin{align*}
\frac{\log_4 (5)}{\log_5 (5)} \cdot \frac{\log_5 (5)}{\log_6 (5)}\cdot \frac{\log_6 (5)}{\log_7 (5)} \cdots \frac{\log_{63} (5)}{\log_{64} (5)} = \frac{\log_4 (5)}{\log_{64} (5)} = 3
\end{align*}
Now fractions:
\begin{align*}
\frac{15}{12} \cdot \frac{24}{21} \cdot \frac{35}{32} \cdots = \frac{3\cdot 5}{2\cdot 6} \cdot \frac{4\cdot 6}{3\cdot 7} \cdot \frac{5\cdot 7}{4\cdot 8} \cdots \frac{62\cdot 64}{61\cdot 65} = \frac{5}{2} \cdot \frac{62}{65} = \frac{31}{13}
\end{align*}
Multiplying these together gets us the original product, which is .\\
Thus
.
See also
2025 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.